
K UNCLASSIFIED "T"" iLF (..piL
A SECURITY CLASSIFICATION OF THIS PAGE (When DRt EnIered) I IS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1 REPORT NUMBER 2. GOVT ACCESSION NO. RECIPIENT'S CATALOG NUMBER

0', AFIT/CI/NR 88- 1 1
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

ItEAL r~m COLFLIC.T XrzcOLVT~oOJ P14' ibD WTHESIS 0
Q .Q TD PwT CD GUID.D Vit41CLE 5CHEUL1JLC 6. PERFORVINGOqG. REPORT NUMBER '1

7. AUTHOR() 9. CONTRACT OR GRANT NUMBER(a)

1")4LO CIZA ADRIELS

9. PERFORMING ORGANI1ZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

AFIT STUDENT AT: Pt£0JyLvAJ)A 5T.4T ,
U JWi\ICL5 Cry "

I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

1988
I1. NUMBER OF PAGES

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _y~o ...

14. MONITORING AGENCY NAME & ADDRESS(I " different from Controlling Office) IS. SECURITY CLASS. (of this report)

AFIT/NR "Is
Wright-Patterson AFB OH 45433-6583 UNCLASSIFIED

IS. DECL ASSI FICATION/DOWNGRADING "
SCHEDULE

16. DISTRIBUTION STATEMENT (of thla Report)

DISTRIBUTED UNLIMITED: APPROVED FOR PUBLIC RELEASE D T IC'.
ELECTE
AUGO03

V88;
17. DISTRIBUTION STATEMENT (of the abatract entered In Block 20, if different from Report)

SAME AS REPORT

SUPPLEMENTARY NOTES Approved for Public ,lease: IAW AFR 190-I

LYNN E. WOLAVER &t)cn 0r-
Dean for Research Professional Development -.
Air Force Institute' of Technology
Wright-Patterson AFB OH 45433- 6543

9. KEY WORDS (Continue on reverse aide If neceesary and identify by block number)

*" "I

20. ABSTRACT (Continue on reverse aide If necesary and Identify by block number)

ATTACHED

t1

DD IJ7 1473 EDITION OF I NOV 65 IS OBSOLETE LN'CISSIFIR
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

pre" 1 ' ,' C . . { . ., ' i , " '

ABSTRACT

Automated Guided Vehicle Systems (AGVS) are one of the most exciting and dynamic

areas in material handling research today.",While there have been significant advances in

material handling techniques over the past decade, the primary growth in this technology

has been in the areas of robotics, automated guided vehicle (AGV) systems, and automated

storage and retrieval systems (AS[RS). i, - r - '

The control of automated guided vehicles (AGVs) and the development of efficient

algorithms to manage material handling problems have been creas of research recently

Ir V ic t:t;
demanding much attention. 4-rthe-past, researchersfave-orrI\addressed the control of

AGVs over networks containing uni-directional paths. The idea of controlling AGVs

through networks containing bi-directional paths is vefy complex and considered too costly

for implementation.

---)In this work, a shortest path algorithm is embedded within a branch-and-bound

procedure to generate conflict-free AGV routes through bi-directional net-works. The

resulting methodology efficiently resolves conflicts that would normally occur among AGVs

traveling in complex AGV systems. Th4idevelopment of this methodology' is discussed in

detail and the computational performance of a most encouraging representative algorithm

is presented. < ' -1,, , ,,.,

, -Accesion For

COPYNTIS CRAMf
DTIC [AB

6UdnnouCcJ lJ
J tj tI 'C tIO

By

D , ',h c : r I or

L;ti. 13:,...

1, [_ N

The Pennsylvania State University

The Graduate School

Department of Industrial Engineering

REAL TIME CONFLICT RESOLUION

IN AUTOMATED GUIDED VEHICLE SCHEDULING

A Thesis in

Industrial Engineering and Operations Research

by

Stephen Craig Daniels

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

May 1988

1988 by Stephen Craig Daniels

,N

U..

.5

S'

""S. S. ' ' ' N , U.- .-.- g.- -^- -
"

- -U-

We approve the thesis of Stephen Craig Daniels.

Date of Signature:

Claude D. Pegden
Associate Professor of Industrial Engineering
Chairman of Committee

1-rm C..L 3__111Z ____

Tom M. Cavalier
Assistant Professor of Industrial Engineering
Thesis Advisor

Pius J. Egbelu
Assistant Professor of Industria] Engineering

Patrick Lee
Assistant Professor of Management Science

Allen L. Soyster
Professor of Industrial Engineering
Head of Department of Industrial and

Management Systems Engineering

--

ABSTRACT

Automated Guided Vehicle Systems (AGVS) are one of the most exciting and dynamic

areas in material handling research today. While there have been significant advances in

material handling techniques over the past decade, the primary growth in this technology

has been in the areas of robotics, automated guided vehicle (AGV) systems, and automated

storage and retrieval systems (AS/RS).

The control of automated guided vehicles (AGVs) and the development of efficient

algorithms to manage material handling problems have been areas of research recently

demanding much attention. In the past, researchers have only addressed the control of

AGVs over networks containing uni-directional paths. The idea of controlling AGVs

through networks containing bi-directional paths is very complex and considered too costly

for implementation.

In this work, a shortest path algorithm is embedded within a branch-and-bound

procedure to generate conflict-free AGV routes through bi-directional networks. The

resulting methodology efficiently resolves conflicts that would normally occur among AGVs
A

traveling in complex AGV systems. The development of this methodology is discussed in l

detail and the computational performance of a most encouraging representative algorithm

is presented.

iv

TABLE OF CONTENTS

Page

LIST OF FIGURES... vii

LIST OF TABLES.. viii

ACKNOWLEDGEMENTS,... ix

Chapter

1 INTRODUCTION... 1

Background of Study... 1

Automated Guided Vehicles.. 1

Benefits of AGVS.. 2

AGV Route Control Technologies..................................... 4
Blocking Systems ... 6

Purpose of Study... 8

Bi-directional Flow AGV Systems.................................... 8
The AGVS Network Model .. 10
Solution Methodology .. 14

2 REVIEW OF APPLICABLE LITERATURE 16

Vehicle Routing and Scheduling Algorithms.............................. 16

Vehicle Routing Problems.. 16

Solution Strategies...1s
Shortcomings.. 21

Vehicle Scheduling Problems.. 21

Shortcomings.. 23

Dial-a-Ride Problems... 24

v

TABLE OF CONTENTS (continued)

Chapter Page

Shortcomings 25

Airplane and Aircrew Scheduling Problems 25
Multicommodity Network Flows ... 26
M ath Program ming .. 27
Time Constrained Traveling Salesman Problem 29
Sim ulation ... 29
An AGV Routing Algorithm ... 31

3 THE CONFLICT RESOLUTION PROCEDURE 34

Branch-and-Bound .. 34

General Branch-and-Bound Algorithm 36
Conflict Resolution Procedure .. 37

Initialization ... 38
Branch and Travel ... 39
Term ination ... 41

4 PROOF OF FEASIBILITY AND CORRECTNESS 42

Proof of Feasibility ... 43
Proof of Local Optim ality ... 46

5 SHORTEST PATH ALGORITHMS ... 50

Shortest Path Algorithm Terminology .. 51
Comparison of Shortest Path Algorithms .. 54
The PSP Algorithm .. 56

6 TEST ALGORITHM AND PERFORMANCE ... 58

W orst Case Behavior .. 59
Average Behavior .. 62

7 CONCLUSIONS AND RECOMMENDATIONS 68

Lim itations of the Study ... 70

BIBLIO G RA PH Y .. 72

Appendix A: GENERAL GRAPHS OF TEST ALGORITHM'S
PERFORM ANCE ... 78

vi

TABLE OF CONTENTS (continued)

Page

Appendix B: ONE SHORTEST PATH PROBLEM PERFORMANCE
GRAPHS 88

Appendix C: TWO SHORTEST PATH PROBLEMS PERFORMANCE
GRAPHS ... 94

' 'S

UST OF FIGURES
p

Page

1. Exam ple Problem 12

2. M eet - Pass Exam ple .. 27

3. Numerical example of Conflict Arc Check .. 44

4. Numerical example of Conflict Arc Check with No Conflict 45

5. Forward Star Network Representation .. 52 P

I

I

a/ -- -m L 'S

viii

LUST OF TABLES

Page

1. Node Distribution for Test Problems .. 64

2. Regression Equations for Computational Performance 67

ix

ACKNOWLEDGEMENTS

The author would like to acknowledge the advice, consideration, and assistance of the

members of his committee. Special thanks are due Dr. C. Dennis Pegden, who motivated

this study with one provocative question: Why not? His continued assistance when

additional obstacles were encountered was instrumental in the completion of the final

product. Gratetul appreciation is also due all the other committee members. Dr. Pius

Egbelu provided critical input concerning bi-directional issues. Dr. Cavalier was especially e

helpful in the final review of this dissertation and provided assistance in the algorithm's

final form. Dr. Patrick Lee was very helpful in providing clear and concise proofs. He

was always willing to provide frank evaluation of any idea presented and suggested useful

presentation approaches.

The encouragement of the author's wife, Margie, kept the spark of interest alive even

in the most trying times, and was invaluable in this project's final completion. While not

often expressed her help was most graciously appreciated.

a..

a.-

Chapter 1

INTRODUCTION

Background of Study

Automated Guided Vehicles

The invention of the automated guided vehicle (AGV) dates back to the 1950's when

automated guided vehicles were called driverless systems. Originally used for automated

distribution centers, they are now being used in manufacturing and assembly facilities. A

variety of advanced technologies have emerged to expand the computer's ability to control

and coordinate AGVs. With better control the automated factory became a reality and

provided numerous profitable applications for the driverless vehicle.

Over the years the evolution of new electronics technology has led to advancements in

the driverless vehicle. The vacuum tube was replaced by the transistor which, after

several years, was superseded by the integrated circuit. Technology marched on and the

integrat.l circuit was eventually supplanted by the microprocessor. All these technological

innovations combined to make automated guided vehicle systems possible.

An automated guided vehicle system (AGVS) is an automated material handling

system which is controlled by a computer system and contains independently addressable

driverless vehicles on a predefined transportation network [50]. The AGVS Product

Section of the Material Handling Institute defines an AGV as:

A vehicle equipped with automatic guidance equipment, either electromagnetic or
optical. Such a vehicle is capable of following prescribed guide paths and may be
equipped for vehicle programming and stop selection, blocking, and any other
special functions required by the system. [13]

'

2

Technological developments may have given AGVS more flexibility and capability, but

market acceptance has really given the AGVS the application variety needed to expand

into the material handling applications demanded today [63]. Originally used for

automated distribution centers, AGVs are now being used in nearly all large scale

manufacturing and assembly facilities. These vehicles have reached the point in their

technological development where they are capable of being an all-encompassing link to all

warehousing systems [57].

This explosion in the industrial application of AGV systems seems to have no end in

sight [27]. Industry appears to be in love with the AGV as they race to apply this

technology. It seems industry managers are convinced the AGV will solve any material

handling problem they have and deliver all of the benefits proponents of AGVS allege. The

AGVS seems to have become the most popular way to transport materials through

warehouses and factories and has made AGVs the fastest growing classes of equipment in

the material handling industry [53]. All available signs show that the AGVS boom will

continue unabated in the future [54].

Benefits of AGVS

In almost any material handling application, the potential benefits of an AGVS are

enormous. The Material Handling Institute [13] provides the following list of benefits of

AGVS:

o Economic Justification - In more and more material handling situations, AGVS
are proving themselves as the most economical method of moving material. Most
AGVS can be justified economically in three years or less.

0 Automatic Interface with Other Systems - AGVS are designed to interface
automatically with other material handling systems includeing con veyors,
automatic storage/retrieval systems, production lines and other devices including
elevators, doors, draw bridges, robots, shrink, and stretch wrap tunnels.

I,

1 1,1 110 1 111 X 1 I III

G1

3

0 System Accountability - Computer control allows material tracking between
stations and delivery confirmation in real time. The benefits include planned I
delivery, transaction audit records, on-line interface to production and inventory
control systems, and management information on vehicle and work station
production.

0 Reduced Labor and Increased Productivity - In cases where driverless vehicles are
used, a substantial savings is incurred due to labor reduction. Order picking
vehicles require operators to perform the picking and stowing functions; however,
a substantial increase in productivity is realized since operators no longer have to
perform complex paperwork functions for the material tracking process.

0 Additional Reductions in Labor - In addition to the direct, material handling It"

labor savings, there are often indirect labor reductiong, including expeditors, I
clerks, and dispatchers.

0 Additional Flexibility . As material movement needs change or plant size
increases, AGVS can be expanded or modified quickly and at low cost. As
requirements increase, load movement capacity in the AGVS is easily modified
by adding one or more vehicles.

0 Unobstructed Aisles - AGVS are installed in the floor and leave no above floor
obstructions. The aisles are free for other uses as necessary. Indirectly, AGVS
contribute to good housekeeping by requiring the aisles be kept free to allow
vehicle traffic.

0 Less Product and Equipment Damage . Studies prove there is less product and
plant equipment damage when AGVS are used to move material. This is
because the vehicles travel on a predetermined route and thus can not collide
with racks or other obstacles.

0 Reliable System Capacity - Because AGVS are composed of a number of vehicles,
when one vehicle requires maintenance, productivity of the other vehicles is not
affected and a high degree of system availability is maintained. All automatic
guided vehicles available are equipped to allow manual override for special
material or vehicle movement situations.

0 Energy and Environment Conservation - AGVS require very little energy to
operate, are not noisy, and leave the manufacturing or warehouse floor virtually
unchanged.

As listed above, AGVS users can achieve higher utilization of manufacturing or

assembly equipment through automatic dispatch of vehicles and tracking of materials

throughout the facility. This automatic interface with other systems can provide the

management decision makers with real-time information concerning the production

10 MM M M IN 1% 111101 11111111 111 11 I11,E III

4

process. This concept gives the manager a better sense of what is happening and better

ability to react to changing market conditions.

Like other automated systems, the operation of an AGV system requires close

monitoring of the movement of the vehicles to ensure orderly flow and operations. The

continuing growth and acceptance of AGV technology suggests further integration of

guided vehicles in flexible manufacturing systems and emphasizes the development of

improved control algorithms for the routing of these vehicles.

AGV Route Control Technologies

Lord Kelvin is attributed with saying "In order to control anything, first you must be

able to measure it [411." Confusion has arisen over what this means in a material handling

environment. Management seems unclear as to what a material tracking system is and

what the automated machines control system is. This confusion stems from the fact that

control systems often include position identification submodules as a part of their control

mechanism, similar to tracking submodules.

In manufacturing, material tracking systems and control systems can be compared to

sports:

Control systems are the coaches who direct actions during the game and tracking
systems are the sportscasters who present the results after the game is over. 1411

Relating this back to the material handling environment and in particular an AGV system,

it becomes apparent that many control systems really only operate as tracking systems

and not as control systems. Their systems are simple conveyor systems with the AGVs

following the leader from origin to destination, just as a shipped box would travel along a

conveyor belt from point A to point B. No real control was exercised over the box, as if it %

really had a choice of routes to travel or conflicts to avoid. Most AGV systems have one

path from node A to node B and hence very little flexibility in routing choice is available.

- U* &0

5

As for real control systems, there are two primary AGV control configurations which

are in use today [69]. Primary vehicle control may reside either in each vehicle or in a

central computer.

With intelligent vehicles and a simple central controller, several features are

available. On board vehicle programming or dispatching is possible. The vehicle has full

knowledge of routes and blocking (traffic control among vehicles) and only requires the

entry of a destination and possibly a function to perform when it gets there.

A control system using intelligent vehicles and a central control computer maintains

continuous communication with the vehicle, either by radio or directly through the

guidewire. This continuous communication provides the capability of full real-time

monitoring of the status and position of all vehicles. Usually, in the event of a failure of

the communications link to a host computer the system has multiple levels of degraded

operation with the lowest residing in each individual vehicle. This type of control system is

typically available for installations using up to 30 vehicles.

Control systems which use a powerful central computer generally have vehicles with

minimal intelligence. All functions, routing and blocking, are controlled by the central

computer. These systems are normally used for installations with 50-200 vehicles.

Central computer communication with vehicles is typically performed through grids at

discrete locations in the floor. Data concentrators in the form of mini-computers buffer all

of these communication grids to allow real-time processing of data by the central vehicle

controller.

These minimally intelligent AGVs usually do not contain a resident map of the routes

and at each grid point receive instruction on which path to take and when to stop or

proceed. In the event of a central vehicle control computer failure, degraded modes of

operation (other than full manual operation) are typically not available. Vehicle

~A .

6

malfunctions between communications points cannot be reported. Instead, notification is

usually the activation of an alarm if a vehicle does not reach its next communication grid

within a prescribed time limit.

The new methodology presented in this work requires a central control mechanism but

does not require individual vehicle intelligence. The new control methodology should

provide increased productivity, throughput, and flexibility. The overall cost of operations

should be reduced through a lower requirement for the number of AGVs necessary to

complete the job and a decrease in space utilized for track.

Blocking Systems

To avoid train collisions, railroads have used red, yellow, and green lights, located at

approximately one mile intervals, as blocking signals. As a leading train passes a blocking

signal, the signal will turn from green to red, indicating to a trailing train that a leading

train occupies the next track segment. Protocol requires a trailing train to stop at a red

signal, sound its whistle and if it proceeds, to do so at creep speed. As the leading train

passes the next block signal the first block signal turns from red to yellow. A trailing train

must stop at a yellow signal, but can then proceed with caution. As the leading train

passes the second block signal forward, the original signal turns from yellow to green.

Trailing trains can always pass through green signals [3 1].

While this blocking scheme is supposed to avoid train collisiors, it would seriously

restrict throughput in an AGV system. However, some method of traffic control in an

AGVS network is critical as vehicle separation and collision prevention must be assured.

Vehicle blocking or collision avoidance within a network is currently accomplished using

one or more of the following techniques. The two most widely used are computer blocking

and point-to-point blocking [56].

!!I Oni_%

7

Computer blocking is typical of systems with smart vehicles with or without a host

computer. The computer, either central or on the vehicle, knows its position on the

guidepath by zone and also is aware of the presence of other vehicles in adjacent zones. If

the zone ahead is clear, the vehicle may proceed, if not, the vehicle will stop. Look-ahead

techniques allow bypass route selection and advance slowdown to minimize continuous

stopping and starting. Look-ahead capabilities usually are not available as uni-directional

paths provide few alternate routes and render the look-ahead function unnecessary. When

conflicts over routes at major or critical intersections occur the user must resolve the

problems by specifying vehicle or routing priorities.

As a rule, point-to-point blocking techniques are hard-wired into the facility floor and,

depending on the complexity of the system, may require considerable support electronics.

Point-to-point techniques employ set-reset logic elements to control path zones. Vehicles

are prevented from moving by hold beacons triggered by vehicles leaving a zone

downstream on the path. These hold beacons ensure there will always be an empty zone

between zones containing vehicles. This technique is generally found on older systems or

systems having extremely simple controls, routes, and vehicles. This technique is also

referred to as a zone-blocking control system and the technique most often used when

creating and testing a system using simulation.

Alternate forms of blocking used less frequently involve optics, ultrasonics, and

bumpers. Optical blocking systems use an infrared transmitter and receiver on the front

of each vehicle. The vehicle stops when an optical target on the rear of a leading vehicle is

seen. Ultrasonic applications are similar to optical blocking except they use a sonar pulse

and measure the time between the reflection of the signal. Bumper blocking systems are

used by small, lightweight, assembly AGVs. They are used in situations where many slow

moving vehicles are configured to physically touch the preceding vehicle. The vehicle

speed is such that they will stop in the collapse range of the bumper mechanism.

.4- -

%. %X

8

The new methodology presented in this work will interface with any of the vehicles, as

long as the vehicle can communicate with a host controlling computer.

Purpse of Std

The typical AGV system operating in manufacturing facilities today utilizes uni-

directional guide-path systems even though Egbelu and Tanchoco [24] have shown a bi-

directional flow systems may be more appropriate. The justification for the use of uni-

directional guide-path system instead of bi-directional system resides primarily in the

simplicity of the system design and the ease of vehicle control. The objective of this study

is to develop a control procedure for routing vehicles through a bi-directional network.

Bi-directional Flow AGV Systems

The use of bi-directional guide-path systems represent an area of significant potential

for AGVS application. The advantages of employing bi-directional traffic flow systems

versus uni-directional systems have been well documented in systems involving highways,

streets, and railroads (1]. City planners have consistently understood the need to

designate streets as one-way or two-way depending on the expected traffic volume, system

throughput, safety, and other economic and political reasons [67,79]. Railroad planners

have selected both single and double track segments for improved system performance

[31]. While there are obvious differences in operational and environmental requirements

for streets and railroads versus AGVs, these applications demonstrate the importance of

investigating the potential benefits bi-directional AGV systems offer over the current

standard uni-directional flow systems.

9

Egbelu and Tanchoco [24] compared facilities production potentials while operating in

a uni-directional network versus one containing bi-directional paths. Using simulation

techniques, they demonstrated that the use of bi-directional networks dominated uni-

directional networks in every performance measure they calculated. For a fixed number of

vehick , shop throughput increased and nonproductive vehicle travel (travel while empty)

time decreased. The use of bi-directional flow networks was shown to provide increased

productivity in many AGV system installations, especially those requiring only a few

vehicles. For a fixed workload, significantly fewer vehicles were required to achieve a

certain transport capacity in bi-directional systems than in uni-directional systems.

Also identified in the study were several factors to consider when converting network

segments from uni-directional to bi-directional operation.

1. The traffic intensity through the segment.

2. The traffic control requirements.

3. The traffic load that would be imposed on other network segments, from
converting from bi-directional to uni-directional and vice versa.

4. Savings or increase in total travel distance over a period of time by designating
segments one way or two way.

5. Future flow requirements and possible expansion or control of the network.

Spinelli [77], in an independent follow up study, found substantial time savings and

increases in AGV utilization were achieved using a bi-directional AGVS.

A commonly given reason for not adopting bi-directional flow networks by vendors is

the difficulty of control and the cost of developing such control systems. Young stated

the control problems involved with dealing with bi-directional guide-path systems
are enormous. If there are more than a small handful of vehicles involved in the
system, the problem becomes totally unmanageable. Guide-path networks are like
belt lines around a city with various entrance and exit ramps allowing access to all
freeway locations or in the case of AGVs, work stations, sidings, etc. [81] '-

sq

10

He appears to be illustrating the inability of industry to route a vehicle against traffic

without disrupting the entire AGVS flow system. The key question is: Can an effective

control methodology be developed without disrupting traffic flow and without costing

industry too much? Economic factors can partially justify modification expense, as there

are increased profits generated from expanded productivity. A larger saving can be

realized from a reduction in the required number of AGVs to perform the job. Additional

savings could be realized from decreased cost in the installation of a new system since the

size of the bi-directional network has been shown to be smaller than the uni-directional

network.

While existing simulation data provides a strong case for bi-directional flow network

systems, vehicle control creates some especially difficult problems. Young [81] called these

problems "unmanageable." The most obvious problem concerns the development of

"sophisticated software" to route the AGV fleet and resolve resulting conflicts among the

vehicles.

The AGVS Network Model

In modeling the flow of vehicles in the AGVS network, this work makes the following

assumptions:

1. All vehicles travel at the same speed.

2. All nodes have facilities for buffering or holding blocked vehicles. This implies
that vehicles may pass or cross only at nodes.

3. All arcs have capacity of only one AGV at any single point.

4. A vehicle travels a distance greater than or equal to its length in one time unit.
Restated this means the minimum safe separation between vehicles is one time
unit.

U

11

The method each individual network provides for the buffering of vehicles and the

technique used for vehicle passage within the network are two topics not addressed in this

work. Those problems have been effectively addressed by Egbelu and Tanchoco [22,24].

Bi-directional AGV systems present highly challenging traffic control problems. There

is very little published literature on bi-directional network operations besides the classic

work by Egbelu and Tanchoco [24]. Spinelli [77] considered the "only available tool for

analyzing complex material handling problems," simulation, and evaluated zone

segmentation lengths in bi-directional and uni-directional AGVS operation. Bi-directional

control was handled using the zone-blocking method and found it only marginally effective

for bi-directional networks. He found zone-blocking contained drawbacks for uni-directional

systems as well.

Spinelli (77] examined the effect zone-control methodology had on AGVS performance.

He found the effects of zone specification on AGVS performance were quantifiable and an

important issue to consider. Extensive traffic segmenting allowed for more simultaneous

occupation of track sections and more accurately modelled how AGVS operate. Failure to

adequately segment the track resulted in deteriorated performance when zone-blocking

control was applied. His work demonstrated the inadequacy of simulation and zone-

blocking in efficiently controlling AGVS.

This work deals with the routing of vehicles over a network where some (or all) of the

paths allow bi-directional flow. Any network which contains at least one bi-directional arc

will be called a bi-directional network. To get an idea of the difficulty this routing problem

presents, consider the following small example presented in Figure 1. There are only

seven nodes with nine bi-directional paths in this network. The problem requires the

scheduling of three AGVs over their respective route such that no collisions occur. It

should be fairly clear that an optimal scheduling of this problem's three AGVs is a non- p

trivial task.

X&DON

12

Network Information ,2-
Node Node Cost

1 3 2

1 6 5
2 4 3
3 5 4
3 6 4 4

4 5 4
5 7 2
6 7 4

AGV Information Origin - Path - Destination (Time)
AGV #1 1 (0) 2 (3) 4 (6)
AGV #2 3 (0) 5 (4) 7 (6)
New AGV 5 2

Figure 1: Example Problem.

It is of some consolation to note that since the entire problem can be modelled as a

complex integer math programming problem, it is classified as an NP-hard problem (see

Worst Case Behavior in Chapter 6). NP-hard, or nondeterministic-polynomial-time

problems are a large class of problems having an important characteristic, namely that all

algorithms currently known for finding optimal solutions to these problems require a

number of computational steps that grows exponentially with the size of the problem. The

NP-completeness discovery changed the direction of research on many difficult problems.

Earlier research efforts were toward optimal solutions, but more recent efforts have turned

to the heuristic algorithms, a more fruitful direction of determining near optimal solutions

in polynomial time. Therefore, these heuristic methods become the logical solution route

for this problem. As will be presented in Chapter 2, no methods currently exist to provide

optimal solutions to the multiple AGV bi-directional routing problem, so an alternative

method will be developed.

Heuristic algorithms utilize comparatively simple methods to obtain acceptable

solutions to problems which are most often unsolvable or impractical to solve using exact

ft%' 5 'w

13

techniques. Application of a rather standard heuristic, the "greedy" heuristic, resulted in

no feasible solution being found. The "greedy" heuristic finds the best route and assigns

that route to the solution. In the example problem, Figure 1 on page 12, that particular

route is node 5 to node 4 to node 2, and is infeasible because a collision occurs on arc 2-4.

A dynamic programming solution approach to calculate an optimal routing would use

an optimal n-I vehicle routing as the basis for obtaining an optimal n vehicle routing.

When only one vehicle is present, the one vehicle routing problem is certainly tractable; in

fact, it is equivalent to the shortest path problem. While this method had some intuitive

appeal, the result was far from satisfactory. The problem was the initial difficult problem

had subproblems that were just as difficult.

The impracticality with the dynamic programming approach is that the route of any

one of the previously scheduled n vehicles can be modified. Therefore the dynamic

programming solution methodology is really fiding an optimal n vehicle routing at each

step, rather than simply finding the best one more vehicle routing, as was hoped. A

modification of any of the existing n-I routes has to be prevented to make the problem

solvable.

Therefore the solution method used in this work requires one important assumption,

The n AGV route will be calculated from an existing n-i AGV route by computing
the optimal route for an additional AGV without modifying any of the existing
AGV's routes.

Once this assumption was added, the dynamic programming approach becomes a feasible

solution procedure. With this assumption, an effective heuristic method for calculating an _

n AGV route could be obtained by adding one AGV iteratively n times. This solution

methodology would also be very effective for real-time operations where AGV requests are

received and routing directions are required. Real-time operation amounts to adding one

more AGV to an existing network. Using the dynamic programming approach one vehicle

14

would be added, along with its corresponding route, to an existing n-1 vehicle routing, thus

creating a new n vehicle routing.

The methodology presented in this work assumes no changes will be made to any of

the existing n-1 vehicle routes. While this might seem restrictive, it is not unrealistic. In

any manufacturing operation, once a route is established, the vehicles and the goods they

transport are expected to arrive at scheduled times. Any modification of an existing route

could delay this schedule and create additional delays further down the production line.

An additional benefit of this methodology is the ability to develop "good" schedules for

n vehicles. The application of the procedure iteratively n times would result in a "good" n

vehicle schedule. The only additional requirement is the designation of an input order for

the AGVs, but this order could represent the priority attached to each AGV in the material

handling system.

Solution Methodology

Motivated by the challenge of directing multiple AGVs over a complex bi-directional

network and the widespread applicability of this AGV control methodology to important

"real-world" situations, the problem of developing a conflict resolution procedure for AGVs

on bi-directional networks will be addressed. The objective of this study is to develop a

procedure which will generate a locally optimal route for a new AGV through a bi-

directional network without conflicting with any existing AGV traffic.

The remaining chapters of this work provide the background and details of this

developmental effort. Chapter 2 contains a review of the literature on other potentially

applicable methods and why these methods are unsuitable to this particular task. Chapter

3 provides a summary of the branch-and-bound solution methodology and a discussion of

the exact conflict resolution procedure developed in this work. Chapter 4 presents proofs

that the solution generated by the procedure is both feasible and optimal. '

15

A cornerstone of the conflict resolution procedure is the shortest path algorithm.

Chapter 5 provides a summary of shortest path algorithms and discusses the shortest path

algorithm used in the example algorithm tested. Chapter 6 presents an example algorithm

developed to test the conflict resolution procedure and the test problems generated to

evaluate the algorithm. A discussion of the worst case and average performance of the

test algorithm is also presented. Finally, some concluding remarks and recommendations

for future research in the study of future AGV systems are presented in Chapter 7.

4,'

55

4

4-

4

N- -Sqi.*~U % - 4' '4 - - - 4

M Wp41 pj, .p41.p41 5 21 MA MA MI MA . .iVMW .W

Chapter 2 I

REVIEW OF APPLICABLE LITERATURE

Vehicle Routi and Scheduling Alari

Solomon [75] presented a nice summary of the vehicle routing and scheduling

problem. The entire summer issue of Networks (Vol 11, No 2, 1981) was dedicated to the

vehicle routing and scheduling problem. Garey, Graham, and Johnson [33] discussed the

difficulty of scheduling algorithms in general, pointing out that most fall in the class of NP-

Hard problems. Lenstra and Rinnoy Kan [581 showed the vehicle routing problem is NP-

Hard and Solomon [76) showed the vehicle routing and scheduling problem with time

window constraints is NP-hard.

The vehicle routing and scheduling problem can generally be stated as follows:

Given a set of transportation tasks to be performed, each with an origin, a
destination, an earliest start time and a latest start time; given also a
transportation network of clearly defined structure, and a set of vehicles of given
speed; find an optimal sequence of tasks, their start times, and routes, such that
the sum of the cost of vehicles required and the total cost of traveling are
minimised. [16]

There are three main groups associated with this class of problem:

1. Vehicle routing problems.
2. Vehicle scheduling problems.
3. Dial-a-ride problems.

Vehicle Routing Problems

The vehicle routing problem is a very important problem in distribution management.

Vehicles are routed over a transportation network with demands for services at various

points. The decision concerning which path the vehicle travels while satisfying these

demands is classified as a routing problem and can be described as follows:

17

Given a set of demand points and a central supply depot (or depots), find a 0
minimum cost set of tours which meet the required demands subject to constraints
on the capacity and range of the vehicles. A number of complicating constraints
may also be present, such as special vehicle characteristics and crew scheduling
constraints. (8]

The following formulation has been referred to as the generic vehicle routing problem.

n n NV
Minimize Z.Z Z ci jxvij

subject to i=1 j=1 v=1

n NV
1= Exj=1 j 2 n (1)

i=1 v i1

n NV

S 1x i i 2,... n (2)

n nX. x x v N
= -= P= 0 = N(3)

1 =I Jp1

n nl n' n

E tiv E xI + Z Z tvxv TV v = , ... NV (5) S
i=1 J=1 1=1 J=1

n
x'J <1 v = 1,.... NV (6)

E xJ :5 1 v = 1 ,NV (7)

Xe S and xvj = 0or I for all i, j, v.

where n = number of nodes ; NV = number of vehicles ; Kv = capacity of vehicle v

T V = maximum time allowed for a route of vehicle ; di = demand at node i (d, = 0);

tv = time required for vehicle v to deliver or collect at node i (t1 v = 0) ; tv j = travel

time for vehicle v from node i to nodej (t'1 = 0) ; cI j = cost of travel from node i to node

j ; x'j = 1 if arc i -j is traversed by vehicle v, 0 otherwise ; X = matrix with components
NV

x -J =VE x'j, specifying connections regardless of vehicle type; and S represents the set

of subtour breaking constraints.

...; -.,. , .,, , :. "- .'.-"r " e -.'; .""..'-j .' ".''2 '.-'e,.',-'"., , . , - -, '. , ..

18

The objective function is to minimize total cost. Constraints (1) and (2) ensure that

each demand node is served by exactly one vehicle. Route continuity is represented by

equations (3), i.e. if a vehicle enters a demand node, it must exit from that node.

Equations (4) represent vehicle capacity constraints and equations (5) are the total elapsed

route time constraints. Equations (6) and (7) guarantee that vehicle availability is not

exceeded.

Solution Strategies

Most solution strategies for vehicle routing problems can be classified into one of the

following approaches:

1. cluster first - route second
2. route first - cluster second
3. savings / insertion
4. improvement / exchange
5. mathematical programming based
6. interactive optimization
7. exact procedures.

following section contains a short summary of each of the above listed approaches:

Cluster first - route second

Cluster first - route second procedures group or cluster demand nodes or arcs first and

then design economical routes over each cluster as a second step. Effective

implementation of this idea was provided by Gillett and Miller [36] and Gillett and Johnson

[351.

1
%

w" • •

19

Route first - cluster second

Route first - cluster second procedures work in the reverse order. First, a large

usually infeasible route or cycle is constructed that includes all of the demand nodes or

arcs. Next, this large route is partitioned into a number of smaller, feasible routes. This

approach has been used for effectively routing school buses and strEet sweepers [10).

Savings or Insertion

Savings or insertion procedures build a solution in such a way that at each step of the

procedure (up to and including the next to the last step) a current configuration, that is

possibly infeasible, is compared with an alternative configuration that may also be

infeasible. The alternative configuration is one that yields the largest savings in terms of

some criterion or that inserts, least expensively, a demand entity not in the current

configuration with the existing route or routes.

Examples of savings/insertion procedures for single depot node and arc routing

problems are described by Clarke and Wright (12) and Golden and Wong [401.

Improvement or exchange

Improvement or exchange procedures always maintain feasibility and strive towards

optimality. At each step, one feasible solution is altered to yield another feasible solution

with reduced cost. This continues until no additional cost reductions are possible.

Examples of this methodology include the well-known branch exchange heuristic developed

by Lin and Kernighan [60]. Their procedure started with any random feasible solution,

sequentially examined k pairs of links for exchange such that the solution was improved%

and remained feasible. An obvious advantage of this procedure is the algorithm can be

terminated at any time with a feasible solution available.

20

Mathematical programming approaches

Mathematical programming approaches include algorithms that are directly based on

a mathematical programming formulation of the underlying routing problem. An example

of the mathematical programming based procedure is given by Fisher and Jaikumar [26].

They formulated the vehicle routing problem as a mathematical program in which two

interrelated components are identified. One component is a traveling salesman (routing)

problem and the other is a generalized assignment (packing) problem. Their heuristic

attempts to take advantage of the fact that these two problems have been studied

extensively and powerful mathematical programming approaches for their solutions have

already been devised. Other mathematical programming based methods include dynamic

programming approaches for obtaining lower bounds in a variety of combinatorial

optimization problems.

Interactive optimization

Interactive optimization is a general-purpose approach in which a high degree of

human interaction is incorporated into the problem-solving process. The idea is that the

experienced decision-maker should have the capability of setting and revising the

optimization model based on subjective assessments and intuition. This almost always

increases the likelihood that the model will eventually be implemented and used.

Exact Procedures

Exact procedures for solving vehicle routing problems include specialized branch-and-

bound and cutting plane algorithms. The conflict resolution algorithm developed in this

study would be classified as an exact procedure to solve a restricted version of the n

vehicle routing problem.

21

Shortcomings

When trying to deal with the routing of AGVs over bi-directional flow networks the

first four methods mentioned do not consider the possibility of opposing traffic conflicts

while allowing an AGV to follow in close proximity behind another AGV. The

mathematical-programming-based approaches generally use traveling salesman problems

or generalized assignment problems as the basic formulation. Traveling salesman problem

formulations are overly restrictive on the vehicle's route. These solutions force the

visitation of each node rather than finding the shortest time routing. Generalized

assignment problems simply assign routes to meet demand requirements. The problem

with the assignment procedure is which routes should be considered for assignment. Both-.

formulations also suffer from the inability to allow duplicate use of an arc when both

AGVs are traveling in the same direction while prohibitting the duplicate use of an arc by

AGVs traveling in the opposite direction.

The interactive optimization approach requires one of the other five methods to

provide solutions for the decision maker to evaluate. Since each of the other five methods

has shortcomings the interactive procedure suffers from similar shortcomings.

Vehicle Scheduling Problems

Vehicle scheduling problems can be thought of as a routing problem in which explicit

consideration is given to the times at which various locations are visited. The vehicle

scheduling problem is used to model transportation systems where delivery time

constraints and precedence constraints are dominant. The problem can be stated as

follows:

22

Given a set of transportation tasks to be performed, each with an origin gj,
destination hi, earliest start time b i, latest finishing time e j, and duration di a S
deadheading time tj j is defined as the travel time from the end of task i to the
beginning of task j. Find a schedule which minimises the number of vehicles
required and/or the total travel time. Since the task durations are fixed, the
minimisation of travel time is equivalent to the minimisation of deadheading time.
(151

A hierarchy of scheduling problems has been summarized in an excellent article by Bodin

and Golden [8].

The vehicle scheduling problem was first described by Dantzig and Fulkerson (171 in

1954. They presented a linear programming formulation and used a simplex algorithm to

solve it. Bellmore, Bennington, and Lubore (6] considered the scheduling and routing of a

fixed fleet of nonhomogeneous vehicles to make a prespecified set of shipments each of

whose delivery dates was restricted to be within some interval of time (time window).

Their formulation had the ability to consider differences in speed, carrying capabilities, and

operating costs of the vehicles. They used a network representation for this problem,

where nodes represented departures or arrivals of shipments at particular times and arcs

represent shipments. Using this representation, every departure or arrival must be

represented by a different node for each possible departure or arrival time. The

formulation has a very large number of variables for reasonably sized problems.

Levin (59] formulated models to minimize fleet size for either fixed or variable N

schedules using an integer program of the max-flow problem with "bundle-constraints."

Tasks were represented by source-sink node pairs with all node pairs for a particular task

"bundled" together to represent the time window for the task. Only one pair was chosen

from any bundle. A branch-and-bound algorithm was used to solve a 26 trip problem in

two minutes.

The vehicle scheduling problem with time windows was analyzed by Orloff [65]. He

formulated the problem as a network problem where tasks were defined as nodes and

23

deadheading time was defined on feasible arcs. Cost factors for travel time and waiting

time and fixed transportation costs were included. His formulation was equivalent to an

assignment problem and his solution used the following heuristic algorithm. Matching

problems were solved to build up schedules by optimally matching single tasks with each

other to form pairs and singletons. These schedules were combined to form larger

schedules, and so on, until no more optimal matchings were possible. Improvements were

then attempted by 3-optimum exchanges. His heuristic worked rapidly and effectively for

some school bus scheduling applications. The vehicle scheduling methodology has some

similarities to the AGV routing problem. The same problem variables are present, but

there is a major shortcoming.

Shortoinga

Almost all the vehicle scheduling problems can be formulated as optimization problems

on appropriately defined networks. In the case of the single depot vehicle scheduling

problem, for example, this formulation leads to an efficient solution using a minimum cost

flow algorithm. When applied to the AGV routing problem, the shortcoming of this

solution methodology is at the heart of the minimum cost flow problem. Any flow

constraint in the network must limit the flow along any arc to one unit. This constraint

prohibits one AGV from following another AGV over the same arc, which may be the

optimal feasible solution. A constraint is needed which will allow following traffic while at

the same time prohibit opposing traffic. Without this constraint or group of constraints an

optimal solution could be eliminated from feasibility or an infeasible solution selected as

optimal.

This is not a simple process. One method is to create additional variables, one for

each time segment along each track and then create additional constraints for each uni-

- .'I ~ **~*~ ~ * ~ ~ % %

24

directional and bi-directional arc. This really does not solve the problem, it only creates

another problem, the already large number of constraints and variables grows enormously,

and no method is available to solve the resulting problem.

Dial-a-Ride Problems

The dial-a-ride problem is concerned with the dynamic routing of vehicles and can be

stated as follows:

Given a set of origin-destination pairs of locations, determine a route which visits
all the locations, in the correct order such that travel distance and customer
waiting time are minimised. [16]

The dial-a-ride problem is an approximate model for a transportation system in which a

request for service is made and an origin-destination pair is specified. Some models

include limit times on pick-up or delivery, but in all models the objective is to provide the

service as soon as possible.

The school bus scheduling problem is about the most data intensive routing and

scheduling problem encountered by Bodin [9]. The routing component is a variant of the

single depot routing problem and is usually solved using the route first - cluster second

approach. The scheduling component organizes the partial routes into schedules. The

starting and ending times for each of the routes must be specified along with the maximum

allowable travel time. The objective used in the scheduling component is to minimize the

total travel time of the vehicles.

While this formulation might seem similar in concept to the n AGV routing problem, .y
I

the same shortcomings were present in this methodology as are present with the vehicle

scheduling problem. The inability of this formulation to handle the detection of a conflict

while allowing an AGV to follow another AGV is a problem all these algorithms cannot

easily handle.

a,

25

Shortomng

The formulation listed in this section, in general, fail due to one of the following four

circumstances:

1. The algorithms fail to provide collision detection provisions and it is not a trivial
task to insert them.

2. Algorithms that provide time window constraints, i.e. collision avoidance, force
the vehicles to be dispatched from a central point, a depot or warehouse.

3. Algorithms with the ability to handle the above two problems will not allow a
vehicle to follow another vehicle along a path.

4. Algorithms which might be modified to address the above three problems require
variables indexed to travel time. This indexing causes the already large number
of variables to increase beyond the capability of currently available computer
systems.

Airplane and Aircrew Scheduling Problems

The scheduling of aircrews has a structure which is very similar to that of the vehicle

scheduling problem, but this problem is more complex because of the workrules and costs

which govern the formation of crew schedules. Since the operating costs for the planes are

several times greater than the crew costs, the scheduling of the planes is carried out first.

The solution methodology is generally broken down into two actions - generating pairings

and constructing bid lines. A pairing is a collection of trips that a crew must complete,

with the trips beginning and ending at the same location. The bid lines are sets of pairings

that represent the monthly work schedules for the crews.

When the complication of a time window in which a task must be carried out is

introduced, this problem resemble the n AGV routing problem. But as with previous

26

formulations, the ability of an AGV to follow another on an arc but not travel in opposing

directions along an arc, makes this particular methodology unacceptable.

Multicommodity NetworkFow

Using surveys by Kennington (49] and Assad (3], the multicommodity network flow

solution methodology was checked for application to this problem. These multicommodity

network flow problems arise naturally in network modeling wherever commodities are to

be transferred from certain nodes to some other nodes in the network. These commodities

could represent vehicles in a transportation system.

While some formulations closely parallel the basic requirements of the n AGV routing

problem, a common shortcoming appears again. All the standard formulations define bi-

directional arc flow variables between node i and node j as x1 j and xj j. The formulation

has a constraint xjj + xj 1 5 1 to prevent both directions of this bi-directional arc from

becoming active anytime during network operation. One problem with this formulation is

this constraint prevents a vehicle from following an existing AGV on an arc, since the

constraint places an implicit constraint on each variable, xij . 1 and xji 5 1. Another

problem is this constraint should be time dependent. For example, if a bi-directional arc

exists between nodes 1 and 2 and has length 3 and at time 0 half of that arc, the directed

arc (2,1) becomes active. In this formulation the opposite direction arc (1,2) should only be

blocked until time 3, but the arc (1,2) should remain unblocked for traffic following except

for a one time unit reservation to prohibit simultaneous (piggy-back) travel.

The multicommodity flow network formulations examined to date do not resolve these

problems without discretizing the time interval and indexing the variables over time.

Additional constraints would be required to handle the different constraints. However, this

V..

II

27

indexing creates an tremendous growth in the number of variables, even for small

problems. When the example problem, Figure 1 on page 12, is put in shortest path

formulation there are 18 0-1 variables and 7 constraints. Put in multicommodity network

formulation the variable count exceeded 5000 and the constraint count exceeded 1500.

While this number is manageable on most computer systems, it must be pointed out this

example problem is very small and a limited time horizon was considered. As soon as a

problem with more nodes and arcs is attempted and a longer traveling time horizon needs

to be segmented, the number of variables really explodes.

Math Programming

The field of math programming is extremely broad. Many of the previously described
ki

problems in this chapter could be classified as math programming formulations. One

unique math programming model discovered was a railroad routing problem designed to

handle the meet-pass situation. This problem has a high degree of similarity with the

AGV problem considered in this work. The meet-pass formulation is a mixed integer math

program with 0-1 variables representing arc choices. This model formulation can be

explained using Figure 2 (25].

I

3 4 5

Figure 2: Meet - Pass Example .

Note that the track has been divided into five separate regions corresponding to decision ,

points along the track. For each active train there is a continuous decision variable, dAjk, I

I

28

which denotes the time which train k spends on track A in region j. Similarly dBj k denotes

the time which train k spends on track B "n region j. Constants 'Ajk and IBJk denote lower

bounds on these times given that train k travels on track A or B in region j. To complete

this example, use two trains traveling in opposite directions beginning at times t, and t 2

respectively. Let tjk represent the time train k arrives at region j (this simplifies the

presentation but is not necessary in the actual model). The transformed variables in this

small example formulation are listed below:

t2 l tI + dA11 t4 2 " t2 + dA5 2
t4= t 1 + dA11 -+ d3 2 1 + dA31 t22= t2 + dA52 + de 4 2 + dA32

This problem will generate a meet at either region 2 or region 4. Using a binary

variable (m) to handle the either or constraint along with a large number (L). The final

formulation is:

t2l - t22 I L(1-m)
t22 + dA22 - t2l - d52 1 9 L(1-m)

t2 -dA22 L(1-m)

t, - d21 L(1-m)

t42- t41 Lm
t41 + dA41 - t4 2 - d8 4 2 f Lm

t- dA4 : Lm
t- dB42 S Lm

Extra dAjkZlAjk constraints can be handled implicitly as upper bounded. variables.

Using an appropriate objective function such as the minimization of total travel time, the

formulation is now complete. This approach may have promise for smaller examples but

as the number of AGV's increases, the possible nurber of meets and passes increases and

hence the number of variables increases "enormou f." Another problem is as the number

of possible meets and passes increase, the difficult constraints increase.

p

k,

29

Tlme Constrained Traveling Salesman Problem

The time constrained traveling salesman problem (TCTSP) is a special case of the

traveling salesman problem where the visit to each location must be made within specified

time windows. The incorporation of time window constraints within the traveling

salesman model may also be found in recent work on dial-a-ride problems. Work done by

Baker [4] proposed a special model with no zero-one variables but the use of absolute value

constraints. There is similarity between this model and the railroad meet-pass problem

listed earlier.

Minimize t, -t

subject to
tn-t 1 t d 1 i = 2,3, ... ,n

ti a 0 i = 1, 2,. n+l I
14 ti <5 ui i = 2,3, n,'

Solutions may be obtained through the use of branch-and-bound procedures which are

necessary to handle the absolute value constraints.

This procedure is overly restrictive to the n AGV routing problem as it requires the

new vehicle to visit every node rather than simply completing a required route. Some of

the ideas from this formulation and the math programming meet-pass example are

incorporated in the solution procedure presented in this work.

Simulation modeling is a technique of imitating a physical system witl computer

programs. The major benefit of simulation is that it is easier to manipulate mathematical

OWNU-AZO aI&OWE6MQ 5,%*(-

,,

30

equations than it would be to manipulate the physical hardware to solve performance %,

problems, especially when the physical system is installed and operating. Simulation has

often been used to compare the performance of different control strategies, but very seldom

is it effective in determining the best solution from all available solutions. Normally in

simulation there are numerous options available, yet only a few are considered best and

hence, only those few are simulated. In this problem there are too many paths to consider,

making it too time consuming to run all the options.

The real problem with applying this methodology to the AGV problem is how to obtain

the paths to simulate. One method might be to generate the k-shortest paths between the

desired origin and destination and simulate these results for feasibility. This method, with

k = 1, was employed by Spinelli [77) but produced inferior results to the methods presented

in this work. He did not attempt simulations with values of k other that one, however.

An additional problem with simulation is the problem of what to do when abnormally long

delays occur and how to determine when and which alternate paths should be explored.

No matter what method is used to obtain the paths, the simulation program must

have the capability to force the AGV to delay in order to resolve a conflict, if and when a

conflict 13 discovered. This can be accomplished using the zone-blocking control strategy

presented earlier and executed in simulation using the seize-release resource techniques.

While the study by Spinelli (77] addressed how ineffective simulation was in obtaining the

best n AGV routing, it pointed out another interesting fact. He found zone segmentation

had significant impact on AGVS performance on both uni-directional and bi-directional

systems. He used a simulation model to analyze the effect of segment length on the

overall performance of an AGVS.

e'e4

4F11T I U1 .W. TVX -7 % -W- ,A.P

31

An AGV Routing Algorithm

In 1987 Fujii and Sandoh [32] considered the control of many AGVs over a

complicated network in a flexible manufacturing system with the object of providing

minimum interferences and idle times. Their routing algorithm attacked the problem by

first solving shortest path problems in the AGV network and then creating an assignment

problem which assigned vehicles to these paths. They attempted to deal with the case

where all n vehicles received requests for routing when they were on nodes and the

vehicles could all start traveling simultaneously. It is interesting to note that, to this

author's knowledge, this was the first published attempt at controlling multiple AGVs over

bi-directional networks using an analytic method and not simulation methods. Their

algorithm follows:

Step 1: For each vehicle, find the kt" shortest fundamental path from the
current node to the requested destination node for k- 1,...,K, where the
fundamental path signifies a path that does not consider stops to avoid
mutual interferences but simply consists of a sequence of nodes. Let
g= 1 and let T=o.

Step 2: Focusing on the traveling time of n vehicles, find a combination of n
fundamental paths, one path for each vehicle, which presents the gth h%

shortest total traveling time among all combinations possible. Call this .

combination the gth shortest fundamental path set. In the following
R(9) denotes the fundamental path for vehicle p (p= 1,...,n) in the g
shortest fundamental path set.

Step 3: Compare T with tg, where t9 is the total traveling time for Rp(9),
p= 1,...,n and if t9 T, go to Step 6, otherwise to Step 4.

Step 4: Assign stops to RP(,), to avoid mutual interferences considering the

unfinished part of the path from the previous request so that the total
traveling time for n vehicles becomes the minimum. Create a linear
programming formulation of an assignment problem to match stops to
vehicles with the objective of minimizing the total stopping time. Let
IR (s), denote the result for vehicle p.

a,

32

Step 5: Compare T with t where tg is the traveling time for R (g),

p-1,...,n. Ifti < T, then let T-ti and R (g) - A(g) for p=1....,n
and go to step 2 with g=g-r 1. Otherwise, go to Step 6.

Step 6: Stop. The optimal path set consists of R (9) for p 1,...,n.

While this algorithm has some very interesting characteristics and a certain similarity

with the work presented in this study, there are two major differences. First, this

algorithm deals with the entire network not simply adding one more vehicle. The problem

they dealt with was the problem initially proposed which was determined to be much too

difficult. Second, this algorithm is computationally expensive and limited in its application.

Their concluding remarks seem to justify the conclusion made earlier in this work, the

multiple AGV routing problem is very difficult and not computationally tractable. For

example they evaluated a 12 node 12 arc network and had to solve 57,984,682,496 linear

programs (LP) with an average of 32.17 constraints per LP. And this is only tracking one

AGV. This is unbelievably complex and hardly able to provide real time control of an

AGV network. Fuji and Sandoh offered the following concluding remarks, (the italic

comments are provided by this author).

1. The number of linear programming problems is originally enormous, but may be
reduced by introducing the idea of the interference candidate path and by
eliminating the infeasible and inefficient problems. This is a nontrivial task and
may take more time than it saves. For the cited example problem (12 node and 12
arc) 469 LP problems were eliminated as infeasible and 7 LP problems were
eliminated as inefficient. This represents less than a .00000821 percent reduction.

2. The computational time is long when many vehicles are installed in a simple and
small-scale network but can be reduced by enlarging the size of the network while
keeping the number of vehicles constant. This indicates the necessity for
considering the adequate number of nodes and arcs in the network with respect
to the number of vehicles installed. As more AGVs are added the number of LP
problems increases ; however, the assignment problems become simpler. Their
conclusion was verified by (771. He demonstrated that the more nodes in a network,
the more opportunities to pass existed and the more close to optimal the resulting
routing.

3. The time to reach the optimal solution is much longer than the time required to
obtain an initial feasible solution. Confirmation of optimality accounts for most
of the computational time in this procedure. This is true of most combinatorial

p

33

algorithms. Since so much time goes into verifying optimality many algorithms
maintain both upper and lower bounds on the optimal solution. When the gap 0
between these two bounds is "small enough" the algorithm is terminated. The
theory behind this idea is the extra work required to close the gap is not worth the
effort.

An attempt was made to apply this methodology to the problem of adding a single

vehicle to an existing AGVS. The result was very similar to the result the authors %

discovered and that are presented above. Consequently, this study presents the most

promising technological advancement for the control of AGVs over bi-directional networks

available.

N

09

Chapter 3

THE CONFLICT RESOLUTION PROCEDURE

Branch-and-Bound

Algorithms based on the branch-and-bound principle have proven useful for various

combinatorial optimization problems. In essence, branch-and-bound methods are

enumerative schemes for solving optimization problems. The underlying idea of a branch-

Iand-bound algorithm is the decomposition of a given problem into several subproblems of

smaller sizes and the evaluation of these, supposedly easier, subproblems. This

decomposition principle is repeatedly applied to these subproblems until each

undecomposed problem is either solved or proven not to yield an optimal solution to the

original problem. The utility of the method derives from the fact that, in general, only a

small fraction of the entire set of possible solutions are enumerated. All other remaining

solutions are eliminated through the application of bounds which establish that these

solution cannot be optimal.

The name "branch-and-bound" arises from its two main operations:

o Branching - which consists of dividing collections of sets of solutions into
subsets.

o Bounding -which consists of establishing bounds on the value of the
objective function over the subsets of solutions.

The branch-and-bound method was initially developed by Land and Doig [55]. Their

technique has proven useful for solving integer, mixed-integer, and zero-one integer

problems. Their branch-and-bound technique is described in more detail in the discussion

that follows.

LOW %M%.

p '

35

Suppose that the objective of some problem is to be minimized. Assume that an upper

bound on the optimal value of the objective function is available. The first step is to

partition the set of all feasible solutions into several subsets. Then, obtain a lower bound

on the objective function for the solutions within each subset. Those subsets whose lower

bounds exceed the current upper bound on the objective function value are then excluded

(fathomed) from further consideration. Select one of the remaining subsets and further

partition it into more subsets. The lower bounds for the partitioned subsets are obtained

and used to exclude some of these subsets from further consideration. From all the

remaining subsets select another one for further partitioning. Whenever a feasible solution

is obtained the upper bound is updated. This process is repeated until a feasible solution is

found whose corresponding objective function value is no greater than the lower bound on

any subset. Such a feasible solution must be optimal since none of the subsets can contain

a better solution.

Geoffrion and Marsten [34] provided a general procedure for solving difficult

combinatorial problem. They claim the general algorithmic framework is based upon three

key notions: separation, relaxation, and fathoming.

Separation. The set of feasible solutions for any optimization problem can be

separated or partitioned into subproblems if the following conditions hold.

1. Every feasible solution to the original problem is a feasible solution of
exactly one of the partitioned subproblems.

2. A feasible solution to any partitioned subproblem is a feasible solution to
the original problem.

The most popular way of separating integer programming problems is by means of

contradictory constraints on a single integer variable.

Relaxation. Any constrained optimization problem can be relaxed by loosening its

constraints. This results in a new problem, the relaxation. Relaxations have the following

properties:

36

1. If the relaxation has no feasible solution, the original problem is
infeasible.

2. The minimal value of the original problem is no less than the minimum
value of the relaxation.

3. If an optimal solution of the relaxation is feasible in the original problem,

the solution is an optimal solution.

The most popular type of relaxation for integer programming is the dropping of the

integrality requirements on all variables.

Fathoming. If it can be ascertained by some means that a subproblem cannot contain

a feasible solution better than the best solution yet found, the subproblem can be dismissed

from further consideration or fathomed. There are three general types of fathoming.

1. Infeasibility. If the relaxed subproblem being evaluated has no feasible
solution, then the subproblem has no feasible solution. The subproblem
need not be partitioned since it cannot possibly contain an optimal
solution.

2. Dominance. If the lower bound of the subproblem, the optimal solution of
the relaxed subproblem, is no better than the best feasible solution found
so far, then the subproblem need not be partitioned. The subproblem need
not be partitioned since it cannot possibly contain an optimal solution.

3. Feasibility. If the relaxed subproblems solution is feasible to the
subproblem then the subproblem need not be partitioned.

If these three notions are put together into a general branch-and-bound algorithm, the

following results.

General Branch-and-Bound Algorithm

Step 0: Initialization step. Set Zu = a. Begin with the entire set of solutions
under consideration as the only "remaining subset." This set of
solutions is usually obtained through some relaxation. Note, this set
includes all infeasible solutions that cannot conveniently be eliminated.
Before iterating through the steps below, apply just the bound step,
fathoming step, and stopping rule to this only remaining subset.

Step 1: Branch step. Use some branch rule to select one of the remaining
subsets (those neither fathomed nor partitioned) and partition it into
two or more new subsets of solutions. .0

37

Step 2: Bound step. For each new subset, obtain a lower bound ZL on the
value of the objective function for the feasible solutions in the subset.

Step 3: Fathoming step. For each new subset, exclude it from further
consideration if
Fathoming test 1: Infeasibility. The subset is found to contain no

feasible solutions,
or

Fathoming test 2: Dominance. ZL2! Zu,
or

Fathoming test 3: Feasibility. The best feasible solution in the subset
has been identified (ZL= objective function value); if this occurs
and ZL< ZU, then reset Zu= ZL, store this solution as the
incumbent solution, and reapply Fathoming test 2 to all
remaining subsets.

Step 4: Stopping rule. Stop when there are no remaining subsets; the current
incumbent solution is optimal. If there is no incumbent solution, then
the problem possesses no feasible solutions. Otherwise, go to step 1.

N

Conflict Resolution Procedure

This work computes a minimum time routing for a new AGV. The new AGV is added

to existing AGV traffic in a bi-directional network and must avoid conflicts with any of the

existing traffic. Motivated by Young's challenge that directing multiple AGVs over a

network with bi-directional pathways is "unmanageable" [81] and by the universal

applicability this methodology would have in industry, a branch-and-bound based conflict

resolution procedure is developed.

Using the underlying idea of branch-and-bound, the initial routing problem is relaxed

by removing all existing traffic from consideration and an initial routing obtained. If this

relaxed solution is not feasible, the problem is decomposed into one or two subproblems.

Each decomposition is evaluated until either a feasible solution is found or it is proven the

decomposition cannot yield an optimal solution. This approach is incorporated in the

following branch-and-bound procedure. The procedure will be presented and then followed

by a discussion of each step in more detail.

1K
.'

38

Step 1: Initialization. Set Zu=c. Solve the relaxation of the initial problem,
i.e. find the shortest path from the origin to destination without regard
to any existing traffic. If no path exists, then no feasible solution
exists and the procedure ends, otherwise, evaluate the path for
feasibility, i.e. see if this routing conflicts with the existing traffic. If
this shortest path is feasible, it is optimal and the procedure ends. If
not go to step 2b.

Step 2: Branch and Travel. Remove a solution from the active list and check
it for feasibility. If the active list is empty go to step 3.

a. If no conflict exists, a feasible solution has been found. Update
ZU and return to Step 2.

b. If a conflict is found, generate two alternative solutions:
bl. Find the shortest path from the origin to the destination

over a modified network with the conflicting arc
removed. It is possible no shortest path exists in this
modified network.

b2. Determine the minimum delay time necessary to
resolve the conflict.

Place the solution(s) found on the active list and return to Step 1.

Step 3: Termination. If any feasible solution was found, ZU represents the
optimal travel time between origin and destination without causing a
conflict to occur.

Initialization

The first step of the procedure is the initialization phase. All network information, the

node, arc, and cost data, as well as the existing AGV routing information, and the new

AGV's origin and destination is input. The first computational step is to obtain an initial

shortest path solution from the new AGV's origin to its destination. Realize, however, this

shortest path solution may not be a feasible routing because other existing AGV's routes

may conflict over the use of some arc along the calculated shortest path. If this path is

determined to be a feasible solution, it is an optimal solution. If no shortest path can be

found then the original problem is infeasible. This initialization step is performed only

once.

U

39

Branch and Travel

The second step of the procedure is the heart of this branch-and-bound methodology.

This branch and travel step is repetitive and performed until the active list becomes

empty. Each solution on the active list represents a lower bound calculated for a set of

paths.

The optimal solution to the original problem would be obtained if all possible paths

were evaluated and the shortest conflict free route was selected. However, previous

discussions in Chapter 2 demonstrated the difficulty that task presented. Solving the

relaxed subproblems or calculating the minimum route in each partitioned set of paths

provides a lower bound for the optimal objective value. As additional constraints or

conflicting arcs are identified, a repartitioning of the set containing the conflicting path

results in restricted relaxations. Each lower bound solution of a partitioned set represents

a relaxation of the original problem differring only in the restrictions used while obtaining

that particular solution.

A lower bound solution for a partitioned set of paths is chosen for evaluation. This

minimum route is checked for feasibility by simulating the movement of the new AGV

along the entire route, checking for an opposing or simultaneous travel conflict. If no

conflict is found the solution is feasible and fathoming test 3, feasibility, is applied. This

feasible solution is compared with Zu, the best solution obtained so far. If this solution is

better, Zu is replaced by the feasible solution found. If not the entire set is removed from

future consideration.

If a conflict is discovered then this particular set of paths will be repartitioned into

three subsets. One subset represents all the paths in the set that do not cover the detected

,os

40

conflicting arc. Another subset represents all the paths in the set that travel over the

detected conflicting arc outside the detected conflicting time window. The remaining subset

contains all the paths traveling over the conflict arc within the conflicting time window.

Clearly this partitioning divides the "parent" set into three mutually disjoint subsets whose

union is the "parent."

Restating the previous paragraphs using mathematical set notation, let S represent

the set of all paths for consideration in the original problem. S = { Set of all minimum

delayed feasible paths from the new AGV's origin to its destination 1, where minimum

delayed feasible paths imply there exists no purposeless idle time along the path. To solve

the problem formulated in this work search the set S for the minimum path. Let

T = { Set of all paths from the new AGV's origin to its destination }, therefore T

represents a relaxation and is generated without regard to any existing network traffic.

The set T represents feasible solutions to the initial relaxation of the problem. Clearly S is

a subset of T. Define Z, the objective function, as the minimum arrival time at the new

AGV's destination. Then if the minimum objective value in T, occurring using path ir*, is

also an element of S, the procedure is complete and no branching is required. However, if

that solution, nR* is not feasible then T needs to be partitioned.

Let T' represent the set T referred to above and let T2 = { set of all paths from the

new AGV's origin to its destination that do not use the detected conflict arc I and T 2 1 l -

set of all paths from origin to destination that use the conflict arc, but the new AGV's

time interval on the detected conflict arc is outside of the time interval where the conflict

arc was used by the conflicting existing AGV }. Let F = { set of all paths from origin to

destination that use the conflict arc, but their time on the conflict arc is within the time

interval identified }. Clearly the union of these three partitioned sets represents all of T.

Using fathoming test 1, infeasibility, the set F can be fathomed. There cannot exist a

41

feasible solution to the original problem in F since there will always be a conflict over the

detected conflict arc. Therefore, the set T1 can be replaced by two sets, T2 and T2 " 1.

The lower bound of the set T1 is evaluated for feasibility. When a conflict is found the

set T' is replaced by T2 ' and T2 1 1. Lower bounds of these two sets may not need to be

added to the active list. Step bi computes lower bounds for each of the two subsets and

may result in either one or both of the subsets being fathomed. For example, it is possible

that removing the conflicting arc disconnects the origin from the destination. In that case,

subset T V is the empty set and has no shortest path solution. Fathoming test 1,

infeasibility, allows the empty subset T2
1 to be fathomed. Subset T 21 1 can not be the

empty set so step b2 computes a lower bound for this set, ZL2 11. If this lower bound is

greater than Zu, the best solution discovered so far, ZL 2 I > Zu, then fathom test 1,

dominance, is applied. No further evaluation of this set is required.

The lower bound of each partitioned set is added to the the active list. The active list

is rexamined, a lower bound of a partitioned set chosen, and the process repeated until the

active list becomes empty. An empty list implies that all problems have been implicitly

evaluated and either eliminated for infeasibility, suboptimality or feasibility. In the case of

feasibility, the set's lower bound is compared with the best previously obtained solution

and the least value retained. Once the active list becomes empty the evaluation process

ceases.

The repetitive decomposition and evaluation phase has been concluded with all

possible solutions implicitly enumerated. The incumbent solution, ZU, the best solution

found so far, represents an optimal solution. If no feasible solution was found then the

problem was infeasible.

Chapter 4

PROOF OF FEASIBILITY AND CORRECTNESS

This study has developed a procedure for the control of automated guided vehicles in a

complex AGVS. This control procedure develops a minimum time routing for adding a new

AGV to an existing AGVS. Applications for this procedure seem widespread.

Wenzel [80] discussed modifying material handling systems when AGV's delay time

increased due to routing problems, frequently reaching between five and ten minutes wait

between vehicles. Gould [42] acknowledged that all major manufacturers have installed

systems with the capability of operating the AGVs in either direction, yet he was unable to

identify a manufacturer operating the AGVs in a bi-directional capacity. Schwind [711

pointed out the bi-directional capability is used for a short run in and out of a pickup or

drop off station which is feeding a multi-aisle automated storage/retrieval system. While

he pointed out Raymond Corporation uses the technology for some simple shuttle systems

he claims few situations need bi-directional capability. Upon closer evaluation and a later

conversation [72] he acknowledged the reason there were no major applications of this

technology was there existed no control technology available for dealing with the inevitable

traffic conflicts that would result. Yet Egbelu [241 firmly demonstrated improved material

handling capabilities using the bi-directional technology, if routing control could be

provided.

The procedure developed in this work provides such a control mechanism. To justify

that claim the following sections present two important proofs. The first proof is that the

path d;.ermined by the conflict resolution procedure is a feasible conflict free routing for

the new AGV. The second proof is that the route is a minimum elapsed time routing for

the new AGV from its origin to destination.

ILA

43 nJ

Proof of Feasibilit

Theorem= The route generated by the conflict resolution procedure is a feasible path, i.e.

there is no use of an arc by the new AGV that conflicts with the use of that same arc by

an existing AGV.

There are two types of paths in an AGV network, uni-directional paths and bi-

directional paths. Uni-directional paths cannot, by definition, have a collision occur from

opposing traffic, however, simultaneous travel (piggy-back) can occur and must be

prevented. If different speed AGVs were used overtaking traffic would become a problem

but, in this work, all AGVs are assumed to be traveling at the same speed. Bi-directional -,

path traffic needs to be checked for simultaneous travel as well as for opposing traffic

conflicts.

Observation 1: There are only two types of infeasible paths possible.

An infeasible path occurs when one of the following conflict conditions is present:

1. Two AGVs attempt to simultaneously travel in the same direction along the
same arc (piggy-back travel).

2. Two AGVs attempt to simultaneously use a bi-directional arc in opposite
directions (opposing traffic).

Simultaneous use of an arc, provided adequate separation exists, in the same direction is

authorized and represents one advancement of this methodology over previously used

simulation directed zone-blocking control methods.

Observation 2: The conflict resolution procedure's route has no piggy-back travel conflicts.

The first and simplest possible conflict to examine is the exact duplicate arc usage

conflict (piggy-back travel). This conflict requires an exact match of arc entry node, arc

exit node, and time entering the arc. This is a fairly straight forward check to make. A

tJ.

'fr n'N£ ' .. ,. --. '. z'>' Z* ", ". ='. . " "-" .,,,,',,.., ':

44

simple comparison of arc endpoints and arc entry times among existing AGV traffic

against the newly routed AGV will provide detection of a piggy-back conflict. If these

three duplications are found then a conflict is indicated, otherwise search for an AGV

attempting to travel in the opposite direction of the new AGV on the same arc.

Observation 3: The conflict resolution procedure's route has no opposing traffic conflicts.

An opposing traffic conflict is detected by checking the new AGV's arc entry node

against all existing AGV's arc exit nodes and if a match is found then check for the same

arc entry node of that AGV against the new AGV's arc exit node. If the new AGV's path

includes the requirement to travel in the opposite direction on an arc used in another

AGV's path that does not necessarily mean there will be a collision but it certainly

identifies an arc where a possible conflict could exist. Consider the numerical example

pictured in Figure 3 to clarify this idea.

tno=3 tnd=lO
X=4

ted' ll tea=7

Figure 3: Numerical example of Conflict Arc Check

Is there a conflict ?

The new AGV, depicted traveling left to right along the top of the arc, departs node A

a' time t,.=3 and departs node B at time t = 10. An existing AGV, depicted moving

right to left along the bottom of the arc, departs node B at time te = 7 and departs node A

at time t*d = 11. To determine whether or not a conflict actually exists the computation of

the arrival time of each AGV at their destination is required. Locating the conflict arc and

its travel time provides the information necessary to compute destination arrival times.

45

In this case the travel time is 4, hence the new AGV arrives at node B at time 7 and

the existing AGV arrives at node A at time t, = 7. In this particular case, see Figure 4,

there is no conflict because the existing AGV departs node B at the same time the new

AGV arrives. Since ta = to,= 7, a pass occurs at node B with no collision detected.

tno=3 tria=7 tnd=O
x-4

tos:l a=t, teo=7

Figure 4: Numerical example of Conflict Arc Check with No Conflict

In terms of the efficient implementation of this opposite traffic conflict check, simply

comparing arc exit node departure times is sufficient as the departure time very often

equals the arrival time at that node. In cases where delays are present, for example after

iterative applications of this methodology, the differences in arrival times are resolved by

finding the travel time for the conflict arc and calculating the actual arrival time. The

computational efficiency of this method for conflict checking is enhanced since the travel

time over an arc only has to be found if a possible collision is discovered. Only in the case

of a possible collision, will the search for the arc be accomplished along with the calculation

of the arrival times, otherwise no arc search is necessary.

An actual conflict is discovered only if the new AGV's arc entry time is less than the

existing AGV's arc exit time, i.e. the new AGV departs its node before the existing AGV

arrives, and the new AGV's arc exit time is greater than the existing AGV's arc entry

time, i.e. the existing AGV left its node before the new AGV arrived. Using the symbols

of Figure 4, if t,, < tea and t,, > too then a conflict occurred and appropriate action

needs to be taken, i.e. repartition that solution set.

46

This conflict checking method allows the AGVs to proceed along their path when no

conflict has been detected over the route examined. This progression continues until the

entire route is checked or a conflict is found. As long as simultaneous travel and possible

collisions do not occur, the conflict checking method allows the AGVs to proceed along their

routes. If the procedure recognizes a situation where an existing AGV and the new AGV

both want to utilize the same arc in opposite directions, then the second stage of identifying

conflicts occurs.

PROOF: Assume, for the sake of contradiction, the solution provided by the conflict

resolution procedure is not feasible. Observation 1 indicated the existence of only two

possible infeasible paths in the AGV network. This provides only two cases for

consideration:

Case 1. Observation 2 demonstrated that piggy-back conflicts were not possible in the

conflict resolution procedure's solution. Therefore, by observation 1, the infeasibility must

be an opposing traffic conflict, but that contradicts observation 3.

Case 2. Observation 3 demonstrated that opposing traffic conflicts were not possible

in the conflict resolution procedure's solution. Therefore, by observation 1, the infeasibility

must be a piggy-back conflict, but that contradicts observation 2.

Since both cases resulted in contradictions, the solution must be feasible. 0

Proof of Local Optimalivy

Theorem: The route generated by the conflict resolution procedure is optimal, i.e. there is

no new AGV routing from origin to destination that provides an earlier arrival time at its

destination.

In the following section two propositions are provided to prove the theorem.

47

Proposition 1: If a feasible solution exists, an optimal solution exists in the union of all

paths represented on the active list.

This proposition is established using induction on the active set at successive

branching nodes. The hypothesis holds trivially for the first branching node (the initial

relaxation), as the initial set of paths contains all routes from the new AGV origin to its

destination, hence must contain an optimal path if one exists. If no path exists from origin

to destination then there is no optimal solution.

The hypothesis is assumed true for the nth branching node and all previous branching

nodes. It will be shown that the branching set that follows this step maintains the

existence of an optimal solution.

Using the set representation of Chapter 3 for path subsets and the upper and lower %

bound variables, the active list at step n can be represented as AL, = { Z,Zj,Z'ZU } ;k

where ZLJ represents a lower bound for a set of paths Tj and Zu is an upper bound on the

UUtravel time for the best path, iru, obtained so far. The path represented by 1ru, with travel

time, Zu is not really maintained on the active list. It is stored separately, but for
convenience in the proof it will be considered as an element of ALT, ALk - T1 ,TJ,....,T,

,u }. By assumption the union of all the path sets represented in ALT, U {ALT }, contains

an optimal solution. It must be shown that the union of the set of paths at step n + 1,

U{ALT i}, contains an optimal solution. Let 7rc be an optimal path contained in

U{AL T}.

The description of the conflict resolution procedure demonstrated that all subsets

remain in AL T except the one subset selected for evaluation. Assume without loss of

generality, that ZLJ, representing the lower bound for the set of paths, TJ , is selected at

branching step n+ I for evaluation. During the evaluation of path irTL two cases may

exist.

48

Case 1. No conlicts are discovered in the path irLi. If no conflicts are discovered in

that path, all other paths in the set T J are fathomed due to dominance. The lower bound

of the set, ZLJ, is compared with Zu, with ZU assigned the lowest value. Let the time to

travel over path lir be Zc. Therefore if Zc e ZLJ, i.e. 11c < ZLJ, then ic must still

remaini U }.

Case 2. A conflict is detected in path 1TLj. If a conflict is detected, the set, T J, must

be partitioned. As previously described, the partitioning process results in three subsets.

One of the subsets, F, is immediately fathomed for infeasibility. Therefore, the set TJ is

replaced by two sets, T2 J and T 2 J . Each subset, with its lower bound, is placed on the

active list. Since the partitioning process only subdivides the set and eliminated a set

containing only infeasible paths, an optimal solution still remains in U {AL'+ 1 }. There

were no feasible routes lost in this partitioning and wTc must still be an element of

The conflict resolution procedure also includes another fathoming rule and this rule is

now considered. Fathoming a set due to dominance means ZLZ Zu. When a set is

fathomed for dominance there can not exist a better solution. Since ZU is retained, it

follows that UT { AL,+. } contains and optimal solution if UT {ALn} does.

Proposition 2: If a feasible solution exists, when there are no more lower bound solutions

on the active list the optimal solution is determined.

This is a fairly straight forward proposition to justify. Since the conflict resolution

procedure has only a finite set of paths to search it must, at some point, find a feasible

solution, if one exists. At every stage of the procedure at least one path and often a set of

paths is fathomed. With this forced elimination of paths and only a finite number of paths %I

tot

to evaluate, the procedure must run out of sets to evaluate. The routine terminates when

the list of candidate problems becomes empty and the list must become empty after a finite

Dow Y'U

49

number of evaluations. At procedure termination, if a feasible solution has been found, i.e.

Zu < ce, that solution is an optimal solution to the original problem.

PROOF: Proposition 1 and 2 establish the theorem. Since an optimal solution is never

eliminated, by proposition 1, and since the procedure must terminate, by proposition 2, the

procedure will terminate with an optimal solution, if one exists. 0

rm

- S - V U~~ U,

Chapter 5

SHORTEST PATH ALGORITHMS

Shortest path problems are by far the most fundamental and also the most commonly

encountered problems in the study of transportation and communication networks. This is

particularly true if the shortest path problem class is generalized to include related

problems, such as the longest path problem, the most reliable path problem, the largest

capacity path problem, the all shortest path problem, and various routing problems [37].

These mathematical models seek to improve efficiency and service by increasing capacity,

reducing travel time, minimizing congestion, reducing the cost of transportation service,

improving vehicle routing, or reducing energy utilization. With all these applications it is

not surprising that a large number of papers, reports, and dissertations have been

published on the subject of shortest path algorithms. There have appeared a number of

excellent surveys, review papers, and bibliographies, such as those by Dreyfus [21] and

Deo and Pang [191.

A review of past work shows algorithmic research has focused on the shortest path

from one node to all other nodes for two reasons [39]. First, many of the applications

require the repeated finding of shortest paths from one to all other nodes in order to

accommodate changing criterion function coefficients or different criterion functions.

Second, solution methods for mathematical programming problems as well as for other

shortest path models often rely on iterative determinations of shortest paths from one node

to all other nodes. This necessity for finding the shortest path several hundred or

thousand times within one application of a general algorithm, has motivated researchers to

seek the most efficient solution method for large directed networks. Since repeated

determination of shortest paths in the AGV network forms the core of the conflict

"Jft X,+', w " '.., .+ t,+ + A, " + +'P , .+ -, , .:P ,+,+p ." .

51

resolution procedure, the search for the fastest shortest path procedure is an important

part of this research effort as well.

While the literature contains many shortest path algorithms, there are really only a

handful of general methods for solving shortest path problems. Each general algorithm

has within it subalgorithms, that is, special subproblems that must be handled in order to

execute the general algorithm. Historically new algorithms were developed because

researchers devised ingenious ways of handling one or more of these subproblems in a -

mathematically efficient manner. The power of computer implementation technology has

demonstrated significant reduction in solution times for most shortest path problems. Dial,

Glover, Karney, and Klingman [201 reported that improved implementation technology

caused solution times for shortest path problems to drop from one minute to slightly more

than one second, using the same general shortest path algorithm, computer, and compiler.

Shortest Path Algorthm Terminology

A network G(N,A) consists of a finite set N of nodes and a finite set A of arcs, where

each arc aEA may be denoted as an ordered pair (u,v), referring to the fact that the arc is

conceived as beginning at a node ueN and terminating at a different node uEN. Let I(a)

or t(u,v) denote the length associated with network arc a-(u,v). A network may be

represented in a computer in several ways and the manner in which it is represented

directly affects the performance of algorithms applied to the network.

The most popular way of storing a network is to use a linked list structure. In this

method, all of the arcs that begin at the same node are stored together and each is

represented by recording only its ending node and length. A pointer is kept for each node

heading and indicates the block of computer memory locations for the arcs beginning at

52

this node. The set of arcs emanating from node u is called the forward star of node u and P

denoted by FS(u); i.e., FS(u) - ((u,v)cA }. If the nodes are numbered sequentially from 1

to I N I and the arcs are stored consecutively in memory such that the arcs in the forward

star of node u appear immediately after the arcs in the forward star of node u-i, then the

forward star form requires only I N I +2 I A I units of memory. Figure 5 illustrates the

storage of a network in sorted forward star form. The number in the square attached to

an arc of the network diagram is the arc length. Most of the newer and faster algorithms

assume that the network is represented in this forward star form.

ENDING
NODE POINT NODE

2 2 3

352 33 4

743 5 4 5

a*4
7 3 7

23 2'1 4

Figure 5: Forward Star Network Representation

Forward star forms for storing networks are commonly used with special algorithms

called labeling methods for implementing shortest path and network flow solution

procedures. In general, labeling methods are the most widely used methods for industrial

and governmental applications because such methods are especially effective in application

to large sparse networks [20].

A rooted tree, is a network T(NT,AT) together with a node r, called the root node, such

that each node of NT is accessible from r by a unique arc-simple path in T. A common

way of representing a tree in a computer is to think of the root node as the highest node in

the tree and all the other nodes hanging below the root. The tree is then represented by

53 I

keeping a pointer list which contains for each node wer in the tree, the starting node v of

the single arc in the tree terminating at w. This upward pointer is called the predecessor

of node w and denoted p(w).

Most labeling algorithms keep another list indexed by the node numbers and

associated with the tree T. For each node v the list contains a label d(v), whose value is

the length of the unique path from r to v in T. Nodes not in T may or may not be labeled

with a node potential value, d(v). Usually the unlabeled nodes are given a very large

value, usually represented as w, indicating that they are not yet reachable through the

tree. The root r is assigned a node potential of zero. Labeling algorithms typically start

with a tree, T, consisting only of the root node r and seek to enlarge and modify T until it

becomes a shortest path tree of the original network G.

Labeling methods for computing shortest paths or minimum trees have been divided

into two general classes, label setting and label correcting methods. The distinction is

based on the order used for scanning nodes and whether the label of the scanned node can

be declared as permanent or not. Both methods typically start with a tree T(NT,AT) such

that NT = {r} and AT = 0.

Label setting methods, as stated, start with an initialized tree, T(NT,AT) with the

distance label of the root set to zero and all other distance labels set to infinity. The nodes

in the forward star of the root node, FS(r), are scanned (examined) to determine if any

distance label can be improved. Each node whose distance label is improved is placed on

an initially empty list called the scan eligible, (SE) node list. Along with the improved node

the arc associated with the improved distance label is recorded. On each subsequent

iteration the node with the minimum distance label on the SE node list is selected,

removed, and added to NT and its associated arc is added to Ar. This node is then scanned

analogously to the root node and the SE node list is updated. A fundamental property of

1':i

54

label setting algorithms is that T is always the shortest path tree for all nodes in NT at

each iteration. It follows that a label setting method will perform exactly I N I iterations

and will examine each arc exactly once. The algorithm terminates when SE is empty or

after IN I iterations.

Label correcting algorithms, as stated, start with T(NT,AT). At each iteration, label

correcting algorithms seek to improve T by reducing the distance label of at least one node

in NT by

1. adding a new arc and node to T

2. replacing an existing arc so as to change and shorten the path to a node
already in T

3. updating a distance label without adding a new arc or node to T.

Label correcting algorithm do not choose scan nodes in a fixed order and their labels are

not permanent until termination.

The primary difference between a label correcting algorithm and a label setting

algorithm is the node selection criterion applied to the SE node list. Label setting

algorithms select as the scanning node, the node from the SE list with the minimum

distance label. Label correcting algorithms may select any node from the SE node list.

Changing the node selection rule destroys the shortest path property of T and hence the

algorithm may not have a polynomial bound. Empirical studies [201 indicate the effort

required to find the minimum distance label often outweighed this disadvantage.

Comnarison of Shortest Path Algorithms

*0

In a study by Dial, Glover, Karney, and Klingman [201 five of the chief label

correcting algorithms and four of the chief label setting algorithms were investigated.

Each code was implemented and tested using efficient data structures and processing

55

methods. For dense problems one label setting code proved best, while for sparser

problems and problems of certain restricted structures, one label correcting code performed

best. The margin of superiority in each case made it evident that no single code was close

to dominating the others for all problems tested. The key conclusion was there was not a

single code that could be applied to all circumstances and always provide the best result.

In an article by Glover, Klingman, and Phillips £38] the authors investigated a

composite procedure which would make use of label setting ideas yet reduce the number of

rescans like a label correcting procedure. They developed a polynomially bounded shortest

path algorithm, called the partitioning shortest path (PSP) algorithm. Their new algorithm

maintained the list of scan eligible nodes in two parts, a concept which is implicit in the

label correcting algorithms. Nodes are added to the second part of the list, transferred to '4

the fiwst part when certain conditions are met, and then removed from the first part for

scanning. To accomplish this process the algorithm calculates a number called a threshold

value. Nodes in the second part of the SE node list are transferred to the first part when "

the distance labels are less than or equal to the threshold value. All nodes in the first part

of the SE node list are then sequentially scanned.

The PSP algorithm explicitly identifies an efficient node scan procedure. Only the

nodes whose distance labels have been improved are scanned and improved distance labels

are used as soon as they are determined. By conceptually linking label correcting and

label setting algorithms, this computationally efficient hybrid of the two approaches was

proven to be polynomially bounded. Test results indicated the PSP algorithm dominated

all of the leading label setting and label correcting codes.

'is

"p

,mb

56

The PSP Alporithm

The general steps of the Glover, Klingman, and Phillips [38] PSP algorithm are as

follows:

Step 0: Initialization. Initialize the predecessor p(i), and distance labed d(i) for
each node icN as follows:

p(i) = 0 for all ieN;
d(i) = w for all i eN, such that i e r;
d(r) = 0.

Set iteration k = 0.
Create two mutually exclusive and collectively exhaustive lists of

scan-eligible (SE) nodes called NOW and NEXT. Initially set
NOW = {r} and NEXT = 0.

Step 1: Select an Element of NOW. If NOW is empty, go to Step 3. Select
any node u from NOW.

Step 2: Scan Selected Node. Scan node u by deleting it from NOW and
examining each node v in the forward star of u, FS(u) (where FS(u) =
{(u,v)cA}) as follows: If d(u) + 9(u,v) < d(v), then redefine
d(v) = d(u) + Z(u,v), p(v) = u, and add node v to the NEXT list if it is
not already on NEXT or NOW. When all nodes in FS(u) have been
examined, return to Step 1.

Step 3: Repartition Scan Eligible Nodes. If NEXT is empty, stop. Otherwise,
set k = k+ 1 and transfer all nodes from NEXT to NOW and return to
Step 1.

The key to the polynomial complexity of this algorithm is the partitioning of the SE

node list. The fundamental property of partitioning is that it bounds the number of times

that nodes are transferred from one part (NEXT) of the scan eligible list to the other part

(NOW). This bound is possible because partitioning guarantees that at least one node has

its distance label permanently set at each iteration under a variety of transfer criteria.

A distance label is called sharp if it represents the actual distance from r to i in the

current tree and not just an upper bound. Glover, Klingman, Phillips, and Schneide, [39]

'5:C5:6

57

developed a variant of the PSP algorithm which attempted to maintain sharp labels

naturally outside of the computationally expensive updating process and incorporated arc

density information into the node scan rule. They created three partitioned sets instead of

the previously described two. This key concept of the new algorithm restricts the node

transfer from NEXT to NOW by providing an intermediate node set. While the authors

claimed the three sets were mutually exclusive, their algorithm did not maintain this

property.

The algorithm used in this work maintains near sharp labe!s and incorporates arc

density information into the node scan selection rule. This algorithm also takes care to

maintain the sets mutually exclusive property. By preventing overlapping evaluation of

nodes, the algorithm's speed is enhanced.

I,'.

Chapter 6

TEST ALGORITHM AND PERFORMANCE

An example algorithm was coded and tested. The algorithm that follows is a pseudo-

code example of the tested conflict resolution algorithm used in this work. %

Call RDATA
Call PSP
Call FIPATH
Call CONFCK(ans)
If ans = no then STOP

else Call PART
LOOP: Call NPICK

Call CONFCK(ans)
If ans - no then Call UBDCK

else Call PART
Go to LOOP

Subroutin e RDATA
This i~iitializes the entire procedure and reads in all AGVS information.
The network data was stored in forward star form using a linked list
structure. Set ZU =00.

Subroutine PSP
This routine solves for the shortest path between input origin and
destination over an input network using the partitioned shortest path
procedure.

Subroutine FIPATH
This routine determines the nodes and node departure time in the shortest

path found by the PSP subroutine.

Subroutine CONFCK
This routine checks for conflicts between the new AGV's active route and
existing AGV traffic.

Subroutine PART
This routine partitions the set of paths represented by the lower bound
solution evaluated into two sets of paths. The first set of paths represents
the evaluated problem with the conflict arc removed and the second set of
paths represents a resolution of the conflict by delaying the new AGV to
resolve the detected conflict. Lower bounds are obtained for , ach
partitioned set of paths and the bounds are placed on the active li:.

'S
*55

59

S.

Subroutine NPICK
This routine selects a lower bound solution from the active list for I
evaluation. Any method could be used, but this algorithm had a choice of
two methods. One was LIFO, last in first out, and the second was Best-
Bound, which checked each active problem and selected the problem with
the best lower bc and as the next problem to evaluate. If the active list is
empty, the program terminates.

Subroutine UBCK
Compare this feasible solution with the best previously obtained solution.
Retain the lowest solution as ZU.

p
Worst Case Behio

Computational complexity theory, as a practical tool for the investigation of

combinatorial optimization problems, came into being around 1971 with the publication of
two classical papers by S.A. Cook [14] and R.M. Karp (48]. These works laid the '

foundation for a technique used to establish the nondeterministic polynomial (NP)

completeness of certain combinatorial problems. Such problems are unlikely to be solvable

by an amount of computational effort which is bounded by a polynomial function of

problem size. Worst case analysis provides valuable mathematical insights into the upper

bound on computational effort and the relative solution difficulty of model types and

individual algorithms. Polynomially bounded algorithms are referred to in the literature as

"good" algorithms. Some shortest path algorithms are polynomially bounded, while others

are exponentially bounded, yet some of the exponentially bounded algorithms consistently

outperform the polynomially bounded algorithms.

Both the vehicle routing problem [58] and the zero-one integer programming problem

(48] have been proven to be NP-hard. A reduction, a constructive transformation mapping

an instance of this AGV routing problem to the zero-one integer programming problem,

proves this problem is also NP-hard. Due to the difficulty of this NP-hard problem class, it

60

is improbable that an optimal solution could be found in polynomial time. The solution

method presented in this work utilizes a partitioned shortest path algorithm as a basis for

the branch-and-bound procedure. Therefore any performance analysis of this procedure

must be dependent on the performance of the shortest path algorithm.

The shortest path algorithm used in this work is a variant of an algorithm presented

by Glover, Klingman, Phillips, and Schneider [391 called the partitioned shortest path

algorithm. This particular algorithm has been shown to have computational complexity on

the order of the number of nodes (N) times the number of arcs (A), NxA. While this

complexity is equal to the best time complexity found for any shortest path algorithms, the

conflict resolution procedure presented in this work requires multiple calculations of

shortest paths.

Consequently, the worst case behavior for the conflict resolution procedure would be

equal to some multiple of NxA, or would be measured by the number of partial problems

which are decomposed and require shortest path computations. While each shortest path

computation evaluates a slightly different network, an upper bound on this calculation is

the total number of arcs in the original network.

For theoretical simplicity, the computational efficiency of a branch-and-bound

algorithm, y, is commonly measured by the number of partial problems, P(y), which are

decomposed in the entire computation [43,51]. The actual time required to carry out the

solution procedure is roughly given by P(y)x, where E is the average time required to

solve a subproblem. In spite of the considerable success of branch-and-bound algorithms, it

is empirically known that P(y) usually increases exponentially with the size of the given

problem.

The NP-completeness argument is considered strong evidence for the nonexistence of a

polynomial time branch-and-bound algorithm. Therefore, it seems unreasonable to expect

= '

' _'5]P W', " W- .' ' Z',, . • \" .,. ,,,,."' ,,.' ." ,,",' , r , '' ',''_ ", " " \"'."',, ".'' '.." .'"' , " '.• ",,_ .''.''.",'-'',_ '.''..''.' ''."."'. ,".

, p

61

that the number of partial problems evaluated, P(y), by any branch-and-bound algorithm I

can be made to grow less than exponentially. Ibaraki [45] proved that the mean number

of partial problems which are decomposed in a branch-and-bound algorithm, grows at least

as fast as exponentially with the problem size. As this AGV routing problem can be

reduced to an integer programming problem, the worst case behavior would be expected to

be exponential, P(y)xf, with E=NxA.

The complexity of an algorithm has usually been measured by its worst-case behavior I

over all instances of the problem. The obvious problem with such a measure is that it

gives little information about the usual or average performance of the algorithm. This is

especially true of branch-and-bound procedures, which can have widely varying behaviors

over all instances of a problem, The major limitation of worst case analysis is that it only

provides a measure of worst case performance and does not normally provide information

on the algorithm's average performance. Empirical tests have shown that algorithms with

better worst case bounds do not always beat algorithms with better average performance.

Consequently, it is felt average performance provides more useful information than a

worst-case measure, provided the empirical tests are representative of "real" problems to

be solved by the algorithm.

The example conflict resolution algorithm was tested extensively and the expected

exponential time complexity can just begin to be seen with problems evaluating four

shortest path problems, see Appendix A. Although experimental testing is not sufficient to

provide worst case behavior, the results seem to validate all predictions stated earlier.

WA

iiiiiiiiiiiijiill1111111111111111 V S V IA I 11 J . '

Vl , :2

62

Average Behavior

The primary method used to evaluate an algorithm's computational complexity is

empirical testing. The computer is used both to evaluate the efficiency of the algorithm

and to provide statistics about the operations of key algorithmic steps under varying test

conditions. Properly generated and utilized, these statistics allow researchers to both gain

valuable insights into how different algorithms perform on a variety of problem topologies

and to improve the design of specific algorithmic steps. An iterative modification,

integration, and evaluation of key processes is directly analogous to the laboratory

research of other disciplines.

Any evaluation procedure has its limitations. The major limitation of the empirical

approach is that any extrapolation of the results to other problems must be considered

speculative. The results are only valid for the computer and language used and the

problems tested. The example algorithm was coded in FORTRAN and tested on a

microcomputer (IBM XT clone) operating at 4.77 MHz. The algorithm was used to solve

141 test problems, with randomly generated nodes, arcs and existing traffic.

In order to test the effectiveness of the test algorithm's performance, 141 problems

were generated and each problem solved twice. The first time a depth-first search

strategy was used. This strategy always evaluates the last lower bound placed on the

active list. In the event a conflict was discovered, the last lower bound represents a

resolution of the conflict by delaying the new AGV to allow the conflicting AGV to pass.

This strategy hopes to find a feasible solution early and then fathom subsequent sets of

paths, resulting in the rapid conclusion of the algorithm. The second time a best-bound

search strategy was used. This strategy evaluates all lower bound solutions on the active

-- Y..w ~ U-
_U-

63

list and selects the smallest one for evaluation. This strategy speculates that the first

feasible solution found will be the optimal solution, with all subsequent lower bounds

fathomed.

The average performance of the algorithm was surprisingly good. In fact 100 of the

141 randomly generated problems required only one shortest path problem evaluation.

This performance was exceptional considering a direct attempt was made to pack each

network with AGVs. Table 1 presents the distribution of the number of problems for each

number of nodes used in the random problem generation. The nonuniformity of the

distribution of the number of test problems per nodes shows a majority of the problems

had less than 40 nodes. This distribution was chosen to attempt to load the algorithm, to

try put several AGVs on lower node count networks and thus obtain the expected

exponential worst case performance of the test algorithm. The graphs presented in

Appendix A validate the partial effectiveness of this attempt. The "hardest" problem

consisted of 40 nodes and required the solving of four shortest path problems and the

evaluation of eight total problem formulations.

Each test problem (with the exception of three problems) was randomly generated

using a random network generator specially developed to generate bi-directional AGV

networks. The generation of the test problem itself presented some interesting challenges

as it was rather difficult to generate feasible test problems. The test network had to be

connected and consist of a majority of bi-directional arcs, but also have the capability to

include uni-directional arcs. The test network had to be realistic, for example a network

having ten arcs incident to one node is nearly physically impossible to construct as an

AGVS. Consequently for realism, node arc density was limited to six arcs and forced to

average between two and four.

64

Table 1: Node Distribution for Test Problems.

Number Number of Number Number of
of Nodes Problems of Nodes Problems

7 1 72 1
10 19 74 1
15 6 75 2
17 2 76 1
20 32 77 1
25 3 78 3
27 1 80 5
30 7 83 1
40 9 85 2
45 3 88 1
47 1 90 2
50 5 91 2
51 1 92 1
55 1 94 1
59 1 95 3
60 6 96 1
61 1 97 1
62 1 98 3
70 2 99 2
71 1 100 4

Three of the networks tested represented actual AGV systems found in the literature

(621. Only three were used as there are not a lot of AGV systems pictorially represented

in the literature. Existing AGV traffic was randomly generated for all problems, even for

the three actual systems used. This is because the actual routing of AGVs in industrial

systems appears to be a closely guarded corporate secret.

The random network generator began with the input of a number n, which

represented the number of nodes in the network. A random number m based on n was

generated which represented the total number of arcs for the network. A bi-directional arc

counts as two directed arcs, but only count as one toward each node arc density. This

number was generated to insure the node arc density did not exceed some maximum

number, usually three, but occasionally four.

65

To randomly generate the arcs and insure a connected network was produced, a

spanning tree consisting of n-1 arcs, was first generated. To accomplish this two lists

were maintained; one list consisted of connected nodes and the second list consisted of the

unconnected nodes. For each generated arc two nodes were selected, one from each list. A

check for duplication and a check for node arc density was made at each step. If either

duplication existed, the entire arc was regenerated. Once the spanning tree was formed,

other bi-directional arcs were generated up to some random proportion of m. When all bi-

directional arcs were generated, uni-directional arcs were generated to complete the

network.

A random number of existing AGVs was generated each with its own origin and

destination. Each AGV's route was obtained using the PSP algorithm previously

described. A check for conflicting traffic was performed and modifications to the routes

were made, if required, to insure feasibility.

The Appendices provide graphical presentations of the algorithm's performance.

These graphs pictorially verify the worst case performance predicted earlier, with the

performance represented by the formula P(y)xt. The first four graphs in Appendix A

demonstrate that P(y) is more appropriately represented by the number of shortest path

problems than by the total number of problems evaluated. One fact that may help explain

this inconsistency is that all the network information is passed to the PSP algorithm by

writing to and reading from a virtual disk. This process was more efficient than writing to

a floppy disk drive, but not as efficient as using a hard disk (the test computer did not

have a hard drive). These disk reads and writes are among the most time consuming

micro-computer operations and tend to dominate the time needed to obtain optimal

solutions. If a larger computer was used the disk reads and writes might be eliminated

and the computation times reduced significantly. Appendix B provides the depth first
.1q

%r-%

66

performance and best bound performance of the algorithm on problems requiring the

evaluation of only one shortest path problem. Appendix C provides the depth first

performance and best bound performance of the algorithm on problems requiring the

evaluation of two shortest path problems. These graphs depict the linear performance of

the algorithm, given the number of shortest path problems solved.

Since E was previously shown to be represented by NxA, it is not surprising that all

the graphs in Appendix B and C using nodes, bi-directional arcs, and total arcs provide

excellent correlation between their value and computation times. What might be

considered surprising was the fact that all those predictors were better than the predictions

using NxA. Table 2 presents regression equations predicting computation time using the

depth first search = DTime and the best bound search = BBTime (Italicized words

represent the shortened variable names used in Table 2). The equations were a result of

stepwise, forward selection, and backward elimination procedures and evaluated the

following variables: number of nodes = Nodes, number of bi-directional arcs = BiArcs,

number of uni-directional arcs = UniArcs, number of total arcs = TotArcs, where

TotArcs = 2xBiArcs+UniArcs, number of nodes times total arcs = N*A, and number of

AGVs = NAGV. In Table 2 equations with an R 2 < 99.0 have only the best of the two

search equations presented. All regression models agreed on the best model, and probably

most surprising was the extreme accuracy the regression models had in predicting the

2V

computational performance of the algorithm. This author had never seen an R2 value of

100.0 without the example being contrived.

With such superior regression results an attempt was made to combine the number of

shortest path problems = NSP evaluated as an input variable to the equation. These

results are provided as the last equations in Table 2.

Wwwwww rIMPKI

67

Table 2: Regression Equations for Computational Performance.

One Shortest Path Evaluation

Regression Eqiuation R 2

DTime = 2.50 + .000483 N*A 96.0
DTime = .367 + .117 BiArcs 98.6

DTime = .243 + .132 Nodes 99.5
EBTime = .240 + .132 Nodes 99.4

DTime = .220 + .0525 TotArcs 100.0
BETime = .216 + .0526 TotArcs 100.0

Two Shortest Paths Evaluation

BETime = 8.16 + .00112 N*A 96.4
BETime = 1.88 + .280 BiArcs 98.1

D~im = 183 +.312Node 99.
DBTime = 1.78 + .312 Nodes 99.2

EBTime = 1.78 + .105 Nodes 99.3

DBTime = 1.98 + .125 TotArcs 99.9

Three Shortest Path. Evaluation

DTime = 9.75 + .00184 N*A 92.2

DTime = 3.30 + .483 Nodes 99.1
EBTime = 3.19 + .483 Nodes 99.1

DTime = 2.21 + .467 BIArcs 99.1.
BBTime = 2.09 + .467 BiArcs 99.2

DTime = 2.78 + .203 TotArcs 99.2
BBTime = 2.67 + .203 TotArcs 99.2

Combined Results

DTime = -3.58 + 2.99 NSP + .0603 NSP*TA 99.2
BETime = -3.48 + 2.90 NSP + .0600 NSP*TA 99.3

DTime = .725 - .0351 TotArcs + .0844 NSP*TA 99.5
BBTime = .708 - .0341 TotArcs + .0835 NSP*TA 99.5

DTime = -1.26+1.51 NSP+.0746 NSP*TA-.0222 TotArcs 99.8
BBTime = -1.23+1.47 NSP+.0739 NSP*TA-.0216 TotArcs 99.8

Chapter 7

CONCLUSIONS AND RECOMMENDATIONS

While AGVs are in use in many factories [5,29,301, organizations are not realizing the

potential for productivity increases and vehicle cost savings resulting from bi-directional

routing of their vehicles. As new system successes become better known, investments in

new systems should increase significantly and existing systems should be modified to take

advantage of this new routing control methodology.

The decrease in the cost of computing in general, and of micro- and mini-computers in

particular, have made automated systems particularly economical. One may currently

purchase a 640K micro-computer with 40 megabytes of hard disk storage, printer, and all

systems software for under $3,000. If compatible bi-directional vehicle control software

existed, even small organizations (if they could afford the AGV equipment) would be able

to automate their material handling activities.

Unfortunately, as Egbelu and Tanchoco [24] indicated, the typical AGV system

employs a uni-directional guide path network. They clearly demonstrated that the use of a

bi-directional traffic flow network could lead to increased productivity if AGV control

capability could be developed. r

The primary aim of this research was the development of this control procedure for

multiple AGVs on a complex bi-directional network. An example algorithm was developed,

coded, and tested. The algorithm was the result of the combination of a modified

partitioned shortest path procedure and the branch-and-bound problem solving

methodology.

The basic structure of this procedure is similar to the structure of most traditional

integer programming solution procedures using a branch-and bound framework. There are

-- k-- *%'~B. ~ N ~ W B

69

two primary ways the procedure developed here differs from traditional branch-and-bound

procedures. The first difference is in the method used to solve the subproblems generated

by the conflict resolution procedure. The generated subproblems for the AGV routing

problem possess the structure of the shortest path problem. The partitioned shortest path

algorithm provides efficient solutions to these subproblems and is a prime factor for the

relative efficiency of the test algorithm developed in this work.

A second difference is in the way the additional constraints, implied by partitioning,

are implemented. In the typical branch-and-bound based integer programming algorithms,

the addition of a new constraint causes primal feasibility to be lost. While feasibility is lost

with the addition of new constraints each subproblem is handled by one of two methods.

The first method is a simple modification of the network by removing an arc from the

previous network and resolving another shortest path problem. The second method can be

done at the conflict detection step. The conflict is resolved by delaying the new AGV at a

node until the conflicting traffic has passed. This second conflict resolution technique

implies less work is done to attain a lower bound to these subproblems than with most

branch-and-bound procedures. The advantage of this second method is validated by the

average computational performance which was most accurately predicted by the number of

shortest path problems evaluated and not the total number of problems evaluated.

The example algorithm which evolved from this research is capable of solving any

AGV routing problem. The maximum size of a problem solvable with this procedure is

limited only by the amount of computer memory resources available. Whatever memory is

available, it should be used effectively, for instance use the efficient forward star

representation of a network mentioned in this work.

2p

I.'

70

Limitations of the Study

The major limitation of this study results from the nature of the problems tested.

Since almost all of the problems were randomly generated, they may not be totally

represpntative of problems found in actual practice. While the test algorithm was written

to use a math coprocessor, the arc lengths in the problems were integer valued and most of 0

the code used integer mode arithmetic. With a math coprocessor, the algorithm should

perform well using real valued arc lengths. But, any extrapolation of the empirical results

beyond the classes of problems considered and beyond the particular codes tested is

speculative at best.

Another limitation is that the example algorithm was tested on only one computer and

with only one compiler. Evaluation on other computers, preferably one currently used in

AGV tracking, would provide a better indication of the ability for "real-time" AGV control.

A larger computer, especially one with a hard disk, would most likely provide faster

solution times. The use of a mini-computer could eliminate the required disk reads and

writes and cause a significant reduction in the overall computation time of the algorithm.

Two search rules were tested in the example algorithm, the LIFO search strategy rule

and the best bound search strategy. While significant computation time differences were

not noted in the problems tested, it is certainly an area for future investigation. The total

number of probl evaluated did exhibit differences using each search strategy.

However, since conflict delay resolutions can be resolved so quickly, reducing the total

number of problems may not be as significant as initially thought. The randomly *o1

generated problems may not be a perfect indication of real AGV systems. As "real" AGV

applications become available for testing, an evaluation of the LIFO and best bound search

I

71

strategy may provide better information. Future research using actual AGV systems will I

provide more information on this control methodology's performance and real-time

applicability.

Future research into an extension of this procedure should consider solving the n

vehicle optimal routing problem. The procedure might attempt to apply the branch-and-

bound methodology to all n vehicles, the problem initially considered. To begin, all

vehicle's routes would be calculated using a shortest path procedure. A conflict detection

procedure would find any conflicts that exist using these routings. If a conflict is detected,

partition the set into five sets rather than the three sets obtained in this work. For

example, consider AGV A and AGV B and set T'. When a conflict is discovered generate

the following five sets: TA2I = { set of all paths from AGV A's origin to destination that

do not use the detected conflict arc }, TA2
1+1 = { set of all paths from AGV A's origin to

destination that use the detected arc, but AGV A's time interval on the detected arc is

outside of the time interval where the conflict arc was used by AGV B }, T8 21
= { set of

all paths from AGV B's origin to destination that do not use the detected conflict arc

T82 1 I - { set of all paths from AGV B's origin to destination that use the detected arc,

but AGV B's time interval on the detected arc is outside of the time interval where the

conflict arc was used by AGV A }, and F { set of all paths for each AGV which use the

conflict arc during the conflicting time window identified }. This method appears to be a

logical extension of the procedure presented in this work, and has obvious application to

AGV system design.

As the procedure in this work and extensions of the procedure are applied to actual

AGV systems, the improved AGVS performance should convince industry of the viability

of bi-directional AGV routing. These concepts will continue the boom of AGVS applications

and as control techniques continue to improve, the material handling industry will exhibit

both increased profits and improved control.

Io

72

BIBLIOGRAPHY

1. Agent, K.R. and Clark, J.D., "Evaluation of reversible lanes," Traffic Engneerin2
adn tol, Vol 23, No 11, November 1982, pp 551-555.

2. Allen, J.D., Helgason, R.V., and Kennington, J.L., "The Frequency Assignment
Problem: A Solution via Nonlinear Programming," Technical Report 85-OR-5,
Operations Research Department, Southern Methodist University, Dallas,
Texas, June 1985.

3. Assad, A.A., "Multicommodity Network Flows - A Survey," Networks, Vol 8, No
1, Spring 1978, pp 37-91. 5

4. Baker, E.K., "An Exact Algorithm for the Time-Constrained Traveling Salesman
Problem," Operations Research, Vol 31, No 5, September-October 1983, pp
938-945.

5. Beck, L., "Lift trucks and AGVs speed warehouse operations," Modern Materials
Handling, Vol 40, No 12, October 1985, pp 76-78.

6. Bellmore, M., Bennington, G., and Lubore, S., "A Multivehicle Tanker Scheduling
Problem," Transportation Science, Vol 5, No 1, February 1971, pp 36-47.

7. Billheimer, J.W. and Gray, P., "Network Design with Fixed and Variable Cost
Elements," Transportation Science, Vol 7, No 1, February 1973, pp 49-74.

8. Bodin L.D. and Golden B.L., "Classification in Vehicle Routing and Scheduling,"
Networks, Vol 11, No 2, Summer 1981, pp 97-108. p.'

9. Bodin L.D., Golden B.L., Assad, A.A., and Ball, M.O., "Routing and Scheduling of .
Vehicles and Crews: The State of the Art," Computers and Operations
Research, Vol 10, No 2, 1983, pp 63-212.

10. Bodin L.D. and Kursh, S.J., "A Computer Assisted System for the Routing and
Scheduling of Street Sweepers," Operations Research, Vol 26, No 4, July-
August 1978, pp 525-537. %

11 Boldrin, B., "Applications and Procurement of Automated Guide Vehicle Systems,"
Robotics Enzineerin , Vol 8, No 2, February 1986, pp 10-14.

12. Clarke, G. and Wright, J.W., "Scheduling of Vehicles from a Central Depot to a
Number of Delivery Points," Qpi jpns Research, Vol 12, No 4, July-August %
1964, pp 568-581.

13. Considerations for Planning and Installing Automatic Guided Vehicle Systems,
Material Handling Institute, 1983.

14. Cook, S.A., "The complexity of theorem-proving procedures," Proceedings of 3rd
Annual ACM Svmposium on Theory of Computing, Association for Computing
Machinery, New York, 1971, pp 151-158.

73

15. Cyrus, J.P. and Kusiak, A., "S' 'duling Problems in Automated Guided Vehicle
Systems," Technical Repor' J/01/84, Department of Industrial Engineering,
Technical University of Nova Scotia, Halifax, Nova Scotia, August 1984.

16. Cyrus, J.P. and Kusiak, A., "The Vehicle Scheduling Problem with Time Windows
in Automated Guided Vehicle Systems," Working Paper #11/84, Department
of Industrial Engineering, Technical University of Nova Scotia, Halifax, Nova
Scotia, October 1984.

17. Dantzig, G.B. and Fulkerson, D.R., "Minimizing the Number of Tankers to Meet a
Fixed Schedule," Naval Research Logistics Quarterly, Vol 1, 1954, pp
217-222.

18. Davies, P., "Automatic vehicle classification techaiques: lane, speed and basic type
classification," Traffic Engineering and Control, Vol 24, No 4, April 1983, pp
195-201.

19. Deo, N. and Pang, C., "Shortest Path Algorithms: Taxonomy and Annotation,"
Networks, Vol 14, No 2, Summer 1984, pp 275-323.

20. Dial, R., Glover, F., Karney, D., and Klingman, D., "A Computational Analysis of
Alternative Algorithms and Labeling Techniques for Finding Shortest Path
Trees," Networks, Vol 9, No 3, Fall 1979, pp 215-248.

21. Dreyfus, S.E., "An Appraisal of Some Shortest Path Algorithms," Operations
Research, Vol 17, No 3, May-June 1969, pp 395-412.

22. Egbelu, P.J. and Tanchoco, J.M.A., "Operational Considerations for the Design of
Automatic Guided Vehicle Based Material Handling Systems," Technical
Report No 8201, Department of Industrial Engineering and Operations
Research, Virginia Polytechnic Institute and State University, Blacksburg,
Virginia, 1982.

23. Egbelu, P.J. and Tanchoco, J.M.A., "Characterization of Automatic Guided Vehicle
Dispatching Rules," International Journal of Production Research, Vol 22, No
3, 1984, pp 359-374.

24. Egbelu, P.J. and Tanchoco, J.M.A., "Potentials for Bi-Directional Guide-Path for
Automated Guided Vehicle Based Systems," International Journal of
Production Research, Vol 24, No 5, September/October 1986, pp 1075-1097.

25. Enscore, E.E., Pegden, C.D., and Cavalier, T.M., "A Math Programming
Formulation of the Meet/Pass Problem," Unpublished Research Proposal,
Department of Industrial Engineering, Pennsylvania State University,
University Park, Pennsylvania, 1984. -,

26. Fisher, M. and Jaikumar, R. "A Generalized Assignment Heuristic for Vehicle
Routing," Ne.tworks, Vol 11, No 2, Summer 1981, pp 109-124.

27. Fitzgerald, K.R., "Assembly and stacking highlight AGVS trends," Modern
Materials Handling, Vol 40, No 10, September 1985, pp 92-96. 4.

| Wp

74

28. Fitzgerald, K.R., "How to estimate the number of AGVs you need," Modern
Materials Handling, Vol 40, No 12, October 1985, p 79.

29. Fitzgerald, K.R., "Our AGVs routinely leave the guidepath," Modem Materials
Handling, Vol 41, No 1, January 1986, pp 80-81.

30. Fitzgerald, K.R., "Ford unveils a stunning example of integration," Modern
Materials Handling, Vol 41, No 7, June 1986, pp 64-70.

31. Frank, 0., "Two-Way Traffic on a Single Line of Railway," Operations Research,
Vol 14, No 5, September-October 1966, pp 801-811.

32. Fujii, S. and Sandoh, H., "A Routing Algorithm for Automated Guided Vehicles in
FMS," Proceedings of the IXth International Conference on Production
Research, Vol II, August 1987, pp 2261-2267.

33. Garey, M.R., Graham, R.L., and Johnson, D.S., "Performance Guarantees for
Scheduling Algorithms," O2erations Research, Vol 26, No 1, January-
February 1978, pp 3-21.

34. Geoffrion, A.M. and Marsten, R.E., "Integer Programming Algorithms: A
Framework and State-of-the-Art Survey," Management Science, Vol 18, No 9,
May 1972, pp 465-491.

35. Gillett, B.E. and Johnson, J.G., "Multi-terminal Vehicle-Dispatch Algorithm,"
OMEGA. The International Journal of Management Science, Vol 4, No 6,
1976, pp 711-718.

36. Gillett, B.E. and Miller, L.R., "Heuristic Algorithm for the Vehicle-Dispatch
Problem," Operations Research, Vol 22, No 2, March-April, 1974, pp 340-349.

37. Glover, F., Glover, R., and Klingman, D.D., "Computational Study of an Improved
Shortest Path Algorithm," Networks, Vol 14, No 1, Spring 1984, pp 25-36.

38. Glover, F., Klingman, D.D., and Phillips, N.V., "A New Polynomially Bounded
Shortest Path Algorithm," Operations Research, Vol 33, No 1, January-
February 1985, pp 65-73.

39. Glover, F., Klingman, D.D., Phillips, N.V., and Schneider, R.F., "New Polynomial
Shortest Path Algorithms and their Computational Attributes," Mangement I1*
Science, Vol 31, No 9, September 1985, pp 1106-1128.

40. Golden, B.L. and Wong, R.T., "Capacitated Arc Routing Problems," Networks, Vol
11, No 3, Fall 1981, pp 305-315.

41. Gormley, T.W., "A Philosophy of Control" Proceedings of the 5th International
Conference on Automation in Warehousing, White, J.A. (ed), December 1983,
IFS (Publications) Ltd and North-Holland, Bedford England.

42. Gould, L., Private communication, October 24, 1986, Modern Material Handling,
Associate Editor, Newton, Massachusetts.

75

43. Ibaraki, T., "Theoretical Comparisons of Search Strategies in Branch-and-Bound
Algorithms," International Journal of Computer and Information Sciences, Vol
5, No 4, December 1976, pp 315-344.

44. Ibaraki, T., "Computational Efficiency of Approximate Branch-and-Bound
Algorithms," Mathematics of Operations Research, Vol 1, No 3, August 1976,
pp 287-298.

45. Ibaraki, T., "On the Computational Efficiency of Branch-and-Bound Algorithms,"
Journal of Operations Research Society of Japan, Vol 20, No 1, March 1977,
pp 16-35.

46. Ibaraki, T., "The Power of Dominance Relations in Branch-and-Bound Algorithms,"
Journal of the Association for Computing Machinery, Vol 24, No 2, April
1977, pp 264-279.

47. Ibaraki, T., "Depth-m Search in Branch-and-Bound Algorithms," International
Journal of Computer and Information Sciences, Vol 7, No 4, December 1978,
pp 315-343.

48. Karp, R.M., "Reducibility among combinatorial problems," in R.E. Miller and J.W.
Thatcher (eds), Comolexity of Computer Computations, Plenum Press, New
York, 1972, pp 85-103.

49. Kennington, J.L., "A Survey of Linear Cost Multicommodity Network Flows,"
Operations Research, Vol 26, No 2, March-April 1978, pp 209-236.

50. Koff, G.A., "Basics of AGVS," SME ULTRATECH, Vol 1, Conference Proceedings
September 1986, pp 3.1-3.17.

51. Kohler, W.H. and Steiglitz, K., "Characterization and Theoretical Comparison of
Branch-and-Bound Algorithms for Permutation Problems," Journal of the
Association for Computing Machinery, Vol 21, No 1, January 1974, pp
140-156.

52. Kulkarni, R.V. and Bhave, P.R., "Integer programming formulations of vehicle
routing problems," European Journal of Operations Research, Vol 20, No 1,
April 1985, pp 58-67.

53. Kulwiec, R., "Automatic Guided Vehicle Systems," Plant Engineering, Vol 36, No
1, 7 January 1982, pp 50-58.

54. Kulwiec, R., "Trends in Automatic Guided Vehicle Systems," Plant Engneering,
Vol 38, No 23, 11 October 1984, pp 66-73.

55. Land, A.H., and Doig, A.G., "An Automatic Method of Solving Discrete
Programming Problems," Ecoom~eri,, Vol 28, No 3, July 1960, pp 497-520.

56. Lasecki, R.R., "AGV System Selection Methodology," SME ULTRATECH, Vol 1,
Conference Proceeding September 1986, pp 3.81-3.96.

Up 4 - 4

76

57. Lasecki, R.R., "AGVs: The Latest in Material Handling Technology," CIM
Iehnok=, Vol 5, No 4, Winter 1986, pp 90-94.

58. Lenstra, J. and Kan, A.R. "Complexity of Vehicle Routing and Scheduling
Problems," Networks, Vol 11, No 2, Summer 1981, pp 221-227.

59. Levin, A., "Scheduling and Fleet Routing Models for Transportation Systems,"
Transportation Science, Vol 5, No 3, August 1971, pp 232-255.

60. Lin, S., and Kernigham, B., "An Effective Heuristic Algorithm for the Traveling
Salesman Problem," Operations Research, Vol 21, No 2, March-April 1973, pp
498-516.

61. Maxwell, W.L., "Solving Material Handling Design Problems With OR," Industrial
n jgimeing, Vol 13, No 4, April 1981, pp 58-69.

62. Maxwell, W.L. and Muckstadt, J.A., "Design of Automatic Guided Vehicle
Systems," IE Transactions, Vol 14, No 2, June 1982, pp 114-124.

63. Miller, R.K., "AGVS: A Needed Technology," Automated Guided Vehicle Systems
Vol 1: Technology and Application, SEAl Technical Publications, Madison,
Georgia, 1985, pp 1-11.

64. Newton, D., "Simulation Model Calculates How Many Automated Guided Vehicles
Are Needed," Industrial Engineering, Vol 17, No 2, February 1985, pp 68-78.

65. Orloff, C.S., "Route Constrained Fleet Scheduling," Transportation Science, Vol 10,
No 2, May 1976, pp 149-168.

66. Orloff, C. and Caprera, D., "Reduction and Solution of Large Scale Vehicle Routing
Problems," Transportation Science, Vol 10, No 4, November 1976, pp
361-373.

67. Petersen, E.R., "Over-the-road Transit Time for a Single Track Railway,"
Transportation Science, Vol 8, No 1, February 1974, pp 65-74.

68. Phillips, D.T., "Simulation of Material Handling Systems: When and Which
Methodology," Industrial Engineering, Vol 12, No 9, September 1980, pp
65-77.

69. Quinn, E.B., "A simulation based system for automatic development and testing of
AGV control software," Proceedings of the 2nd International Conference on
Automated Guided Vehicle Systems, Warnecke, H.J. (ed), June 1983, North
Holland, Oxford England.

70. Schwind, G.F., "AGVS for assembly: flexible layout, easy expansion," Material
Handling Engineering, Vol 40, No 10, September 1985, pp 58-62.

71. Schwind, G.F., Private communication, October 27, 1986, Material Handling
Engineering, Executive Editor, Cleveland, Ohio.

77

72. Schwind, G.F., Private communication, November 3, 1986, Material Handling 0

Engineering, Executive Editor, Cleveland, Ohio. 0

73. Shier, D.R., "On Algorithms for Finding the k Shortest Paths in a Network,"
Networks, Vol 9, No 3, Fall 1979, pp 195-214.

74. Smith, D.R., "Random Trees and the Analysis of Branch-and-Bound Procedures,"
Journal of the Association for Computing Machinery, Vol 31, No 1, January
1984, pp 163-188.

75. Solomon, M.M., "Vehicle Routing and Scheduling with Time Window Constraints:
Models and Algorithms," Working paper 83-12-02, Department of Decision
Sciences, The Wharton School, University of Pennsylvania, Philadelphia,
Pennsylvania, December 1983.

76. Solomon, M.M., "On the Worst-Case Performance of some Heuristics for the
Vehicle Routing and Scheduling Problem with Time Window Constraints",
Working paper 83-12-03, Department of Decision Sciences, The Wharton
School, University of Pennsylvania, Philadelphia, Pennsylvania, January
1984.

77. Spinelli, J.J., "The Effects of Load/Unload Times and Network Zoning on an
Automated Guided Vehicle System," Unpublished Masters Paper, Department
of Industrial and Management Systems Engineering, The Pennsylvania State
University, University Park, Pennsylvania, November 1987.

78. Tarjan, R.E., "A Simple Version of Karzanov's Blocking Flow Algorithm,"
Operations Research Letters, Vol 2, No 6, March 1984, pp 265-268.

79. Weingarten, C., "The One-way Preference Street," Traffic Engineerin , Vol 28, No
6, March 1958, pp 21-22.

80. Wenzel, C.D., Private communication, October 13, 1986, SPS Technologies,
Automated Systems Division, Hatfield, Pennsylvania."

81. Young, E.L., Private communication, November 14, 1986, Litton Industrial
Automation Systems Inc., Automated Vehicles Systems, Zeeland, Michigan.

N

78

Appendix A

GENERAL GRAPHS OF TEST ALGORITHM'S PERFORMANCE

Depth First Time Performance
vs.

Number of Network Nodes
110-

100 22 3

90 1 22

80 22 2

70 . 222

10z 60-

0

50 5 1 22 3E 2
z 40T e s22 4

30- 1 2 '

-20 I1 2
!11 2

1 0- 1 Z 3
~3

0-

0 5 10 15 20 25 30 35 40 45 50 55

Computation Time (secs)

The Plotted Number represents the number of shortest pth problems solved

* -~ .--. * ~

Ib

79

Best Bound Time Performance
vs.

Number of Network Nodes
1110-

100- 222

90 1 22

12

80- 211 j2
°2

70 1
02
z 60 11 l2

50 1 2)

z 0 22 4

30 1 22
33

10 1 Z 3
3 J

0

0 5 10 15 20 25 30 35 40 45 50 55

Computation Time (secs)

The Plotted Number represents the number of shortest path problems solved

M M n

80

Depth First Time Performance
vs.

Number of Network Nodes
110

100 113 5
33

90 43

4
80' J~33I

3

m 70 1
0
z 60i

50- 11 33 6
E j 3
z 4 0 1 M3 8

30 1
1 5

20 1 34
11 3

10 1 5 5
5

0

0 5 10 15 20 25 30 35 40 45 50 55

Computation Time (secs)

The Plotted Number represents the total number of problems solved
.,,

81

Best Bound Time Performance
vs.

Number of Network Nodes
110

100 1V 3 5

90 4i1I33
1

80.
31

r 70

*0- oz 60.
0

50 1 3 6
E3

z 0 11 ,, 38

30 1

1 7
20 1 M4

1i 3
10 1 .3 5

5

0

0 5 10 15 20 25 30 35 40 45 50 55

Computotion Time (secs)

The Plotted Number represents the total number of problems solved

82

Depth First Time Performance
vs.

Number of Bi-directional Arcs
140-

12071

110. 1112 2

~100 31

2
9 0- 22 22

850

30 34
202

0 2 33

40.

30 3

83

Best Bound Time Performance
vs.

Number of Bi-directional Arcs
140

130

120 1

110 1,2
inili" 222CA 100 1 1 23

o 2

8 0 11
< 2

= Ii-60 2 2
.50

40 1

30

ii!

023

z 0

0 5 10 15 20 25 30 35 40 45 50 55

Computation Time (secs)

The Plotted Number represents the number of shortest path problems solved

84

Depth First Time Performance
vs.

Number of AGVs
13-

122 111 11 2 2

10 111 2

9 1 22 3

o~8 2 22
0

7-1
0

6 1 1 11 111 2 2 2 4
E .%

z 5 1 11211111 2 3

4 11 22 11211 2 23 2

3 1111i112 1 1222 2

2 1111 23211 ,

0 .1

0 5 10 15 20 25 30 35 40 45 50 55

Computation Time (secs)

The Plotted Number represents the number of shortest path problems solved

85

Best Bound Time Performan~ce
vs.

Number of ACVs
13-

12 1

11 11 22

10 11 2

9 1 22 3

2 22

7-

0

ill11111 2 2 2 4
E

z 5- 1 11211111 2 3

4- 1 1 22 11211 22 3 2

3- 111112 112I 1 1222 2

2 111 1 23211 2

1 111112

0 5 10 15 20 25 30 35 40 45 50 55

Computation Time (!-ecs)

The Plotted Number represents the number of shortest path problems solved

86

Depth First Time Performance
vs.

Total Number of Arcs
270
260 11250
2401
230 2
220 1
210 12
200 1
190 2
180 1
170

<160,
0 150 1

140 2
2E 130, 22 3

Z3120,2

110.1 2

"90

80
70
60 3
50
40 2
30 - 3
20 3
10
0

0 5 10 15 20 25 30 35 40 45 50 55

Computation Time (secs)

The Plotted Number represents the number of shortest path problems solved

87

Best Bound Time Performance
vs.

Total Nurmber of Arcs
270
2601
250 1
240 3 3
230 2
220 1 22
210 2
200 11
190 1 2

180
170
160

0 150
. 40 2

30 3zD120- 1

-a 110
t 100 4

80.
70
60 3
50 ~ j
40 11 2
30 f 3
20 3
10
0

0 5 10 15 20 25 30 35 40 45 50 55

Computation Time (secs)

The Plotted Number represents the number of shortest path problems solved

I
I

88

Appendix B

ONE SHORTEST PATH PROBLEM PERFORMANCE GRAPHS

One Shortest Path Evaluated

Depth First Time Performance
vs.

Number of Network Nodes
110

100 ++ +
+ +

90+ +

80+ +

70 + 4

80 +

*0

+t:

50 +-
E6 +

I,,®50 4+
5

E ++
z 40+-

30
+

+--

20
..+

10. *

01 0 ' I ' I I

0 4 8 12 16

Computation Time (secs)

DTime =.243 + .132 * #Nodes ,,-Sq =99.5

" ...• r '- ,*." ' . = , ', , --, ') ", '' ', I

89

I

One Shortest Path Evaluated

Best Bound Time Performance
vs.

Number of Network Nodes
110

100 +++e +

90+ +

+0 + +

70 +
80 +

n 70 + -
-o

o6 +

L' 50 +I--+

E +:3 ++

z 4 0

30
+4-

20 --
4--+ ,

10110 -,,-

0
II I ' ' I '

0 4 8 12 16

Computation Time (secs)

BBTime = .240 + .132 * #Nodes R-Sq = 99.4

90

One Shortest Path Evaluated

Depth First Time Performance
vs.

Number of Bi-directional Arcs
1301

120 + 9-

110 +++ +

100 + + + ++
+-F

+

C 80 ++

70 + +

S60 +
0 ++

S50 +++
+ --

=140z--

30

20

10

0 4 8 12 16

Computation Time (secs)

DTime = .367 + .117 * #BiArcs R-Sq 98.6

sum NIN

91

One Shortest Path Evaluated

Best Boun~d Timne Performance
vs.

Number of Bi-directiornal Arcs

120+

110, ++ +

in +

100 + + ++

m +
7 0 ++

-~ +

0

0 ++

70~ +

z6 +4 (

30 +

2 0
-D + +

10-

01

0 4 8 12 16

Computation Time (secs)

BBTime =.363 + .1 17 *#BiArcs R-Sq =98.6

92

One Shortest Path Evaluated

Depth First Time Performance
vs.

Total Number of Arcs
270-

240 +

4-

210 ++

180 -- "

0 150E
- 120 +

I go

I I * I 400

0 4 8 12 16

Computation Time (secs)

DTime = .220 + .0525 * #TotArcs R-Sq = 100.0

~~c~c~

93

One Shortest Path Evaluated

Best Boun~d Time Performance
vs.

Total Number of Arcs
270-

240 +

++
210.

o180.

P 4-

~150

Z3 120 +

+4-

60.+

30

0-

0 4 8 12 16

Computation Time (secs)

BBTime =.216 +.0526 * #TotArcs P-Sq =100.0

94
. .

Appendix C

TWO SHORTEST PATH PROBLEMS PERFORMANCE GRAPHS

Two Shortest Paths Evaluated"7

Depth First Time Performance
vs.

Number of Network Nodes
110 -

100
++

90 + +

i+ + +

+

-0+

10 ++"

0

01250 ++E

D:im 1.++3 foe -q9.

z 40 +

20 -

.+

0 +

0 5 10 15 20 25 0 35

CoinipuLotion Time (secs)

DTime =1.83 +.312 •#Nodes R-Sq =99.2

95

Two Shortest Paths Evaluated

Best Bound Time Performamce2
vs.

Number of Network Nodes
110-

100-

+f-++

70 +

0
* +0

++

0 +40

0

160

01

5 05101202303
CompuationTime secs

E Bim 1.8+30 #o-e q 9 .

96

pa

Two Shortest Paths Evaluated

Depth First Time Performance
Vs.

Number of Bi-directional Arcs
130-

120 7

110 +
4.?

100 +
+ m90 ++

80 +
- +

70 +

I.-
0

50 +

E '
1 40

z +
30 4+

20 _+

10

04

o 5 10 15 20 25 30 35
4,.

Computation Time (secs)

DTime = 1.94 +.282 * #BiArcs R-Sq = 97.9

%4

N

97

Two Shortest Paths Evaluated

Best Boun~d Time Performancwe
vs.

Number of Bi-directional Arcs
130-

120

110 + ++

100 +

S90 + + + + +

S80+
o +

.0

70 +

3 60 + ,,

0
, 50 + +

V +

E40
z +

30

20 + #

10

0-

0 5 10 15 20 25 30 35

Computation Time (secs)

BBTime = 1.88 +.280 * #BiArcs R-Sq = 98.1

98

Two Shortest Paths Evaluated

Depth First Time Performance
vs. .

Total Number of Arcs
270-

240

210 +

+

180 +

'0 150

E +0" 120 ++

z+

0 +
90 ++

,

60

4-p

+

0 I I I . I

0 5 10 15 20 25 30 35

Computation Time (secs)

DTime = 1.98 +.125 * #TotArcs R-Sq = 99.9

• I

Jul III PIAF I I W." --V

99

Two Shortest Paths Evaluated

Best Boun~d Time Performaunce
vs.

Total Number of Arcs
270-

240- +4
+

120-

0 150-t+ +

~9+

60+
ES

60

0 510 15 20 25 30 35

Computation Time (secs)

BBTime =1.93 +.125 * #TotArCs P-Sq =99.8

VITA

Stephen Craig Daniels He

graduated from Clinton Senior High School, Clinton, Missouri, May 1970. He entered the

United States Air Force Academy (USAFA) and graduated in June 1974, receiving a

Bachelor of Science in Mathematics.

After graduation he attended Undergraduate Pilot Training (UPT) at Moody Air Force

Base (AFB), Georgia. He graduated from UPT in July 1975 and was assigned to Combat

Crew Training School (CCTS), Castle AFB, California, where he learned to fly KC-135

aircraft. An outstanding graduate from CCTS, he was assigned to the 42nd Aerial

Refueling Squadron. From 1976 to 1980 he was a Copilot, Aircraft Commander, and

Squadron Executive Officer at Loring AFB, Maine. In 1980 the Air Force selected him to

attend The Pennsylvania State University. He graduated in March 1982 with Master of

Science degrees in computer science, industrial engineering, and operations research.

From 1982 to 1985 he served as an Instructor and Assistant Professor in the USAFA

Mathematics Department.

He published an article "Fuzzy Multi-criteria Integer Programming via Fuzzy

Generalized Networks," in Fuzzy Sets and Systems, Vol 10, 1983.

He has given three presentations to professional organizations:

1. "Sensitivity Analysis in Linear Integer Programming and Applications

to Goal Programming," presented to The Pennsylvania State
Operations Research Colloquium, August 1982.

2. "Symmetry in and Computation of the Transient Output Process
Solution for M/M/1 Queue," presented to the XXVI International TIMS

Conference, Coppenhagen, Denmark, June 1984.

3. "Microcomputer Use in Teaching Math Modeling," presented to the
Joint Se:vice Mathematical Modeling Symposium, 1983 and 1984.

He belongs to the Operations Research Society of America and the Air Force

Association.

